Skip to main content
Top

2020 | OriginalPaper | Chapter

(T-ToCODE): A Framework for Trendy Topic Detection and Community Detection for Information Diffusion in Social Network

Authors : Reena Pagare, Akhil Khare, Shankar Chaudhary

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increased use of social network generates a huge amount of data. Extracting useful information from this huge data available is the need of today. Study and analysis of this data generated provide insight into the behavior of the customers or users and thus will be beneficial to increase the sales of products or understand customers. To achieve the same, we propose a novel framework which will extract trendy topics, identify communities related to these trendy, topics, and also identify influential or seed nodes in communities. The framework intends to find the list of topics which are popular, second, find trend-driven communities, and from these trend-driven communities find nodes which act as seed nodes and thus dominate the spread of information in the community. Analysis of real-world data is done and results are compared with baseline approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘03), pp. 137–146. ACM, New York, NY, USA (2003). http://dx.doi.org/10.1145/956750.956769 Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘03), pp. 137–146. ACM, New York, NY, USA (2003). http://​dx.​doi.​org/​10.​1145/​956750.​956769
2.
go back to reference Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) Proceedings of the 3rd international conference on Internet and network economics (WINE'07), pp. 306–311. Springer, Berlin, Heidelberg (2007) Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) Proceedings of the 3rd international conference on Internet and network economics (WINE'07), pp. 306–311. Springer, Berlin, Heidelberg (2007)
3.
go back to reference Bonchi, F.: Influence propagation in social networks: a data mining perspective. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2(1) pp. 2–2 (2011) Bonchi, F.: Influence propagation in social networks: a data mining perspective. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2(1) pp. 2–2 (2011)
5.
go back to reference Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 1–39 (2007)CrossRef Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 1–39 (2007)CrossRef
7.
go back to reference Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probability ies for independent cascade model. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 67–75 (2008) Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probability ies for independent cascade model. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 67–75 (2008)
8.
go back to reference Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘10), 1029–1038. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1835804.1835934 Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘10), 1029–1038. ACM, New York, NY, USA (2010). https://​doi.​org/​10.​1145/​1835804.​1835934
9.
go back to reference Liu, L., et al.: Modelling of information diffusion on social networks with applications to WeChat. Physica A Stat. Mech. Appl. 496, 318–329 (2018)CrossRef Liu, L., et al.: Modelling of information diffusion on social networks with applications to WeChat. Physica A Stat. Mech. Appl. 496, 318–329 (2018)CrossRef
10.
go back to reference Pal, A., Counts, S.: Identifying topical authorities in microblogs. In: WSDM ’11, pp. 45–54 (2011) Pal, A., Counts, S.: Identifying topical authorities in microblogs. In: WSDM ’11, pp. 45–54 (2011)
11.
go back to reference Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)CrossRef Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)CrossRef
12.
go back to reference Kim, Jooho, Hastak, Makarand: Social network analysis: characteristics of online social networks after a disaster. Int. J. Inf. Manag. 38(1), 86–96 (2018)CrossRef Kim, Jooho, Hastak, Makarand: Social network analysis: characteristics of online social networks after a disaster. Int. J. Inf. Manag. 38(1), 86–96 (2018)CrossRef
13.
go back to reference Tu, H.T., Nguyen, K.P.: Differential information diffusion model in social network. In: Asian Conference on Intelligent Information and Database Systems. Springer, Cham (2018)CrossRef Tu, H.T., Nguyen, K.P.: Differential information diffusion model in social network. In: Asian Conference on Intelligent Information and Database Systems. Springer, Cham (2018)CrossRef
14.
go back to reference Shi, J., et al.: Determinants of users’ information dissemination behavior on social networking sites: an elaboration likelihood model perspective. Internet Res. 28(2), 393–418 (2018)CrossRef Shi, J., et al.: Determinants of users’ information dissemination behavior on social networking sites: an elaboration likelihood model perspective. Internet Res. 28(2), 393–418 (2018)CrossRef
15.
go back to reference Hu, W., et al.: Who will share my image?: Predicting the content diffusion path in online social networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM (2018) Hu, W., et al.: Who will share my image?: Predicting the content diffusion path in online social networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM (2018)
16.
go back to reference Yang, Jaewon, Leskovec, Jure: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)CrossRef Yang, Jaewon, Leskovec, Jure: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)CrossRef
17.
go back to reference Tu, H.T., Nguyen, K.P.: Competitive information diffusion model in social network with negative information propagation. In: Asian Conference on Intelligent Information and Database Systems. Springer, Cham (2018)CrossRef Tu, H.T., Nguyen, K.P.: Competitive information diffusion model in social network with negative information propagation. In: Asian Conference on Intelligent Information and Database Systems. Springer, Cham (2018)CrossRef
18.
go back to reference Liu, X., Liu, C.: Information Diffusion and Opinion Leader Mathematical Modeling Based on Microblog. IEEE Access (2018) Liu, X., Liu, C.: Information Diffusion and Opinion Leader Mathematical Modeling Based on Microblog. IEEE Access (2018)
19.
go back to reference Beydoun, G., et al.: Disaster management and information systems: insights to emerging challenges. Inf. Syst. Front. 20, 1–4 (2018)CrossRef Beydoun, G., et al.: Disaster management and information systems: insights to emerging challenges. Inf. Syst. Front. 20, 1–4 (2018)CrossRef
20.
go back to reference Liang, Y., Kee, K.F.: Developing and validating the ABC framework of information diffusion on social media. New Media Soc. 20(1), 272–292 (2018)CrossRef Liang, Y., Kee, K.F.: Developing and validating the ABC framework of information diffusion on social media. New Media Soc. 20(1), 272–292 (2018)CrossRef
21.
go back to reference Jiang, C., Chen, Y., Liu, K.J.R.: Evolutionary dynamics of information diffusion over social networks. IEEE Trans. Signal Process. 62(17), 4573–4586 (2014)MathSciNetCrossRef Jiang, C., Chen, Y., Liu, K.J.R.: Evolutionary dynamics of information diffusion over social networks. IEEE Trans. Signal Process. 62(17), 4573–4586 (2014)MathSciNetCrossRef
22.
go back to reference Romero, Galuba, W., Asur, S., Huberman, B.: Influence and passivity in social media. In: ECML/PKDD ’11, pp. 18–33 (2011) Romero, Galuba, W., Asur, S., Huberman, B.: Influence and passivity in social media. In: ECML/PKDD ’11, pp. 18–33 (2011)
23.
go back to reference Lim, K.W., Chen, C., Buntine, W.: Twitter-network topic model: a full Bayesian treatment for social network and text modeling (2016). arXiv preprint arXiv:1609.06791 Lim, K.W., Chen, C., Buntine, W.: Twitter-network topic model: a full Bayesian treatment for social network and text modeling (2016). arXiv preprint arXiv:​1609.​06791
24.
go back to reference Jain, S., Mohan, G., Sinha, A.: Network diffusion for information propagation in online social communities. In: 2017 Tenth International Conference on Contemporary Computing (IC3). IEEE (2017) Jain, S., Mohan, G., Sinha, A.: Network diffusion for information propagation in online social communities. In: 2017 Tenth International Conference on Contemporary Computing (IC3). IEEE (2017)
25.
go back to reference Stai, E., et al.: Temporal dynamics of information diffusion in twitter: modeling and experimentation. IEEE Trans. Comput. Soc. Syst. 5(1), 256–264 (2018)MathSciNetCrossRef Stai, E., et al.: Temporal dynamics of information diffusion in twitter: modeling and experimentation. IEEE Trans. Comput. Soc. Syst. 5(1), 256–264 (2018)MathSciNetCrossRef
26.
go back to reference Ye, X., et al.: Open source social network simulator focusing on spatial meme diffusion. In: Human Dynamics Research in Smart and Connected Communities. pp. 203–222. Springer, Cham (2018)CrossRef Ye, X., et al.: Open source social network simulator focusing on spatial meme diffusion. In: Human Dynamics Research in Smart and Connected Communities. pp. 203–222. Springer, Cham (2018)CrossRef
27.
go back to reference Jalayer, M., Azheian, M., Kermani, M.A.M.A.: A hybrid algorithm based on community detection and multi attribute decision making for influence maximization.”. Comput. Ind. Eng. 120, 234–250 (2018)CrossRef Jalayer, M., Azheian, M., Kermani, M.A.M.A.: A hybrid algorithm based on community detection and multi attribute decision making for influence maximization.”. Comput. Ind. Eng. 120, 234–250 (2018)CrossRef
28.
go back to reference Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATH
29.
go back to reference AlSumait, L., Barbará, D., Domeniconi, C.: On-line LDA: adaptive topic models for mining text streams with applications to topic detection and tracking. In: 2008 Eighth IEEE International Conference on Data Mining, Pisa, pp. 3–12 (2008). https://doi.org/10.1109/icdm.2008.140 AlSumait, L., Barbará, D., Domeniconi, C.: On-line LDA: adaptive topic models for mining text streams with applications to topic detection and tracking. In: 2008 Eighth IEEE International Conference on Data Mining, Pisa, pp. 3–12 (2008). https://​doi.​org/​10.​1109/​icdm.​2008.​140
30.
go back to reference Cordeiro, M.: Twitter event detection: Combining wavelet analysis and topic inference summarization. In: Doctoral Symposium on Informatics Engineering, DSIE (2012) Cordeiro, M.: Twitter event detection: Combining wavelet analysis and topic inference summarization. In: Doctoral Symposium on Informatics Engineering, DSIE (2012)
32.
go back to reference Wu, C., Wu, B., Wang, B.: Event evolution model based on random walk model with hot topic extraction. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds.) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science, vol. 10086. Springer, Cham (2016)CrossRef Wu, C., Wu, B., Wang, B.: Event evolution model based on random walk model with hot topic extraction. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds.) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science, vol. 10086. Springer, Cham (2016)CrossRef
33.
go back to reference Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)CrossRef Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)CrossRef
Metadata
Title
(T-ToCODE): A Framework for Trendy Topic Detection and Community Detection for Information Diffusion in Social Network
Authors
Reena Pagare
Akhil Khare
Shankar Chaudhary
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9949-8_43