Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 12/2023

20-09-2023 | Original Research Article

Tailoring Microstructural and Electrical Properties of Hypoeutectic Sn-Cu Through Ni Doping

Authors: S. L. A. Dantas, A. L. R. Souza, J. E. Spinelli, M. A. Correa, B. L. Silva

Published in: Journal of Electronic Materials | Issue 12/2023

Log in

Abstract

The present study aims to understand the effect of Ni (0.05 and 0.1wt.%) on the microstructural variations and electrical resistivity of Sn-0.7wt.%Cu-xNi alloys by weight, considering the following study conditions: (i) high cooling rates with refined microstructure and (ii) low cooling rates with thicker microstructures, metal/mold interface of 5 mm and 90 mm, respectively. Structural characterization was carried out using x-ray diffraction and scanning electron microscopy to support the electrical report. The four-point probe method was used to determine the electrical resistivity of the studied alloys. The structural analyses confirmed fibrous-type Cu6Sn5 and (Cu,Ni)6Sn5 intermetallics. Lower values of electrical resistivity were associated with higher fractions of the β-Sn phase, regardless of the growth morphology of the solid-liquid interface. A decrease in the electrical resistivity was observed with the addition of Ni on the Sn-Cu-Ni alloys, a consequence of the refined microstructures, i.e., those having a higher Sn phase fraction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.A. Jaffery, M.F.M. Sabri, S.M. Said, S.W. Hasan, I.H. Sajid, N.I.M. Nordin, M.M.I.M. Hasnan, D.A. Shnawah, and C.V. Moorthy, Electrochemical corrosion behavior of Sn-07Cu solder alloy with the addition of bismuth and iron. J. Alloys Comput. 810, 151925 (2019). CrossRef H.A. Jaffery, M.F.M. Sabri, S.M. Said, S.W. Hasan, I.H. Sajid, N.I.M. Nordin, M.M.I.M. Hasnan, D.A. Shnawah, and C.V. Moorthy, Electrochemical corrosion behavior of Sn-07Cu solder alloy with the addition of bismuth and iron. J. Alloys Comput. 810, 151925 (2019). CrossRef
2.
go back to reference A.A. El-Daly and A.E. Hammad, Development of high strength Sn–0.7Cu solders with the addition of small amount of Ag and In. J. Alloys Compd. 34, 8554–8560 (2011). CrossRef A.A. El-Daly and A.E. Hammad, Development of high strength Sn–0.7Cu solders with the addition of small amount of Ag and In. J. Alloys Compd. 34, 8554–8560 (2011). CrossRef
3.
go back to reference Y. Lv, W. Yang, J. Mao, Y. Li, X. Zhang, and Y. Zhan, Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy. J. Mater. Sci. Mater. Elect. 31, 202–211 (2020). CrossRef Y. Lv, W. Yang, J. Mao, Y. Li, X. Zhang, and Y. Zhan, Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy. J. Mater. Sci. Mater. Elect. 31, 202–211 (2020). CrossRef
4.
go back to reference X. Wang, F. Sun, B. Han, Y. Cao, J. Du, L. Shao, and G. Liu, Wetting characteristics of Sn-5Sb-CuNiAg lead-free solders on the copper substrate. Sold Surf. Mount. Tech. 34, 96–102 (2022). CrossRef X. Wang, F. Sun, B. Han, Y. Cao, J. Du, L. Shao, and G. Liu, Wetting characteristics of Sn-5Sb-CuNiAg lead-free solders on the copper substrate. Sold Surf. Mount. Tech. 34, 96–102 (2022). CrossRef
5.
go back to reference S.N. Alam, P. Mishra, and R. Kumar, Effect of Ag on Sn–Cu and Sn–Zn lead free solders. Mat. Sci.-Poland 33, 317–330 (2015). CrossRef S.N. Alam, P. Mishra, and R. Kumar, Effect of Ag on Sn–Cu and Sn–Zn lead free solders. Mat. Sci.-Poland 33, 317–330 (2015). CrossRef
6.
go back to reference P.D. Sonawane, V.K. Bupesh Raja, and M. Gupta, Effects of gallium, phosphorus and nickel addition in lead-free solders: a review. Mater. Today Proc. 46, 3578–3581 (2021). CrossRef P.D. Sonawane, V.K. Bupesh Raja, and M. Gupta, Effects of gallium, phosphorus and nickel addition in lead-free solders: a review. Mater. Today Proc. 46, 3578–3581 (2021). CrossRef
7.
go back to reference B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7 wt.%Cu solder alloys containing 0 ppm to 1000 ppm Ni. J. Elect. Mat. 42, 179–191 (2013). CrossRef B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7 wt.%Cu solder alloys containing 0 ppm to 1000 ppm Ni. J. Elect. Mat. 42, 179–191 (2013). CrossRef
8.
go back to reference A. Kar, M. Ghosh, R.N. Ghosh, B.S. Majumdar, and A.K. Ray, Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater. Let. 62, 113–116 (2008). CrossRef A. Kar, M. Ghosh, R.N. Ghosh, B.S. Majumdar, and A.K. Ray, Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater. Let. 62, 113–116 (2008). CrossRef
9.
go back to reference H.M. Henao, C. Chu, J.P. Solis, and K. Nogita, Experimental determination of the Sn-Cu-Ni phase diagram for Pb-free solder applications. Metall. and Mater. Trans. B. 50, 502–516 (2019). CrossRef H.M. Henao, C. Chu, J.P. Solis, and K. Nogita, Experimental determination of the Sn-Cu-Ni phase diagram for Pb-free solder applications. Metall. and Mater. Trans. B. 50, 502–516 (2019). CrossRef
10.
go back to reference T. Ventura, Y.H. Cho, and C. Kong, Formation of intermetallics in Sn-0.9Cu and Sn-0.7Cu-0.08Ni solders. J. Electron. Mater. 40, 1403–1408 (2011). CrossRef T. Ventura, Y.H. Cho, and C. Kong, Formation of intermetallics in Sn-0.9Cu and Sn-0.7Cu-0.08Ni solders. J. Electron. Mater. 40, 1403–1408 (2011). CrossRef
11.
go back to reference M. Zhao, L. Zhang, Z. Liu, M. Xiong, and L. Sun, Structure and properties of Sn-Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20, 421–444 (2019). CrossRef M. Zhao, L. Zhang, Z. Liu, M. Xiong, and L. Sun, Structure and properties of Sn-Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20, 421–444 (2019). CrossRef
12.
go back to reference G. Zeng, S. Xue, L. Zhang, and L. Gao, Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22, 565–578 (2011). CrossRef G. Zeng, S. Xue, L. Zhang, and L. Gao, Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22, 565–578 (2011). CrossRef
13.
go back to reference D. Jaiswal, V. Singh, D. Pathote, and C.K. Behera, Electrochemical behaviour of lead-free Sn–0.7Cu–xIn solders alloys in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 32, 23371–23384 (2021). CrossRef D. Jaiswal, V. Singh, D. Pathote, and C.K. Behera, Electrochemical behaviour of lead-free Sn–0.7Cu–xIn solders alloys in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 32, 23371–23384 (2021). CrossRef
14.
go back to reference R. Raj, P. Shrivastava, N. Jindal, S.N. Alam, N. Naithani, M. Padhy, A.S.D. Phani, T.V.V. Ramana, and M.M. Abbas, Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu solder alloys. Int. J. Mater. Res. 110, 1150–1159 (2019). CrossRef R. Raj, P. Shrivastava, N. Jindal, S.N. Alam, N. Naithani, M. Padhy, A.S.D. Phani, T.V.V. Ramana, and M.M. Abbas, Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu solder alloys. Int. J. Mater. Res. 110, 1150–1159 (2019). CrossRef
15.
go back to reference T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, and A.K. Dahle, The influence of 0–0.1 wt.% Ni on the microstructure and fluidity length of Sn-0.7Cu-xNi. J. Elect. Mater. 37, 32–39 (2008). CrossRef T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, and A.K. Dahle, The influence of 0–0.1 wt.% Ni on the microstructure and fluidity length of Sn-0.7Cu-xNi. J. Elect. Mater. 37, 32–39 (2008). CrossRef
16.
go back to reference B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Sn–0.7wt%Cu–(xNi) alloys: Microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coeficiente. Mater Let. 632, 274–285 (2015). B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Sn–0.7wt%Cu–(xNi) alloys: Microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coeficiente. Mater Let. 632, 274–285 (2015).
17.
go back to reference L.F. Gomes, B.L. Silva, P.S. da Silva Jr, A. Garcia, and J.E. Spinelli, Ag-containing aluminum-silicon alloys as an alternative for as-cast components of electric vehicles. Mater. Res. Exp. 8, 016527 (2021). CrossRef L.F. Gomes, B.L. Silva, P.S. da Silva Jr, A. Garcia, and J.E. Spinelli, Ag-containing aluminum-silicon alloys as an alternative for as-cast components of electric vehicles. Mater. Res. Exp. 8, 016527 (2021). CrossRef
18.
go back to reference M. Abtew and G. Selvaduray, Lead-free solders in microelectronic. Mater. Sci. Eng. 27, 95–141 (2000). CrossRef M. Abtew and G. Selvaduray, Lead-free solders in microelectronic. Mater. Sci. Eng. 27, 95–141 (2000). CrossRef
19.
go back to reference B.A. Cook, I.E. Anderson, J.L. Harringa, and R.L. Terpstra, Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys. J. Elect. Mater. 31, 1190–1194 (2002). CrossRef B.A. Cook, I.E. Anderson, J.L. Harringa, and R.L. Terpstra, Effect of heat treatment on the electrical resistivity of near-eutectic Sn-Ag-Cu Pb-free solder alloys. J. Elect. Mater. 31, 1190–1194 (2002). CrossRef
20.
go back to reference C. Yu, J. Liu, H. Lu, and P. Li, First-principles investigation of the structural and electronic properties of Cu 6-xNi xSn 5 (x ¼ 0, 1, 2) intermetallic compounds. Intermetal. 15, 1471–1478 (2007). CrossRef C. Yu, J. Liu, H. Lu, and P. Li, First-principles investigation of the structural and electronic properties of Cu 6-xNi xSn 5 (x ¼ 0, 1, 2) intermetallic compounds. Intermetal. 15, 1471–1478 (2007). CrossRef
21.
go back to reference B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Sn–0.7 wt%Cu–(xNi) alloys: Microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coefficient. J. Alloys Compd. 632, 274–285 (2015). CrossRef B.L. Silva, N. Cheung, A. Garcia, and J.E. Spinelli, Sn–0.7 wt%Cu–(xNi) alloys: Microstructure–mechanical properties correlations with solder/substrate interfacial heat transfer coefficient. J. Alloys Compd. 632, 274–285 (2015). CrossRef
22.
go back to reference N.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, and H. Arof, Effect of Ag content and the minor alloying element Fe on the electrical resistivity of Sn–Ag–Cu solder alloy. J of Alloys and Comp. 599, 114–120 (2014). CrossRef N.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, and H. Arof, Effect of Ag content and the minor alloying element Fe on the electrical resistivity of Sn–Ag–Cu solder alloy. J of Alloys and Comp. 599, 114–120 (2014). CrossRef
23.
go back to reference S. Chantaramanee and P. Sungkhaphaitoon, Investigation of microstructure, thermal properties, and mechanical performances of Ni-added Sn-5.0Sb-0.5Cu/Cu solder joints. Microelect. Reliab. 127, 114421 (2021). CrossRef S. Chantaramanee and P. Sungkhaphaitoon, Investigation of microstructure, thermal properties, and mechanical performances of Ni-added Sn-5.0Sb-0.5Cu/Cu solder joints. Microelect. Reliab. 127, 114421 (2021). CrossRef
24.
go back to reference J. Campbell, Complete Casting Handbook: Metal Casting Processes, Techniques and Design, 2nd ed., (Amsterdam: Elsevier, 2015). J. Campbell, Complete Casting Handbook: Metal Casting Processes, Techniques and Design, 2nd ed., (Amsterdam: Elsevier, 2015).
25.
go back to reference W. Kur and D. J. Fischer, Fundamentals of solidification. CRC Press, 1 ed. ISBN-10: 0878498044 (1998). W. Kur and D. J. Fischer, Fundamentals of solidification. CRC Press, 1 ed. ISBN-10: 0878498044 (1998).
26.
go back to reference W. Yang and D.D.L. Chung, Effect of the cooling rate in solidification on the electrical behavior of solder. J. Mater. Sci. Mater. Electron. 32, 7867–7874 (2021). CrossRef W. Yang and D.D.L. Chung, Effect of the cooling rate in solidification on the electrical behavior of solder. J. Mater. Sci. Mater. Electron. 32, 7867–7874 (2021). CrossRef
27.
go back to reference N. Ismail, A. Jalar, A. Afdzaluddin, and M.A. Bakar, Electrical resistivity of Sn–3.0Ag–0.5Cu solder joint with the incorporation of carbon nanotubes. NanoMITe Ann. Symp. Nanotech. Mala. Ann. Symp. 11, 1–9 (2019). N. Ismail, A. Jalar, A. Afdzaluddin, and M.A. Bakar, Electrical resistivity of Sn–3.0Ag–0.5Cu solder joint with the incorporation of carbon nanotubes. NanoMITe Ann. Symp. Nanotech. Mala. Ann. Symp. 11, 1–9 (2019).
28.
go back to reference S. Alsowidy, A.M. Aljarbani, and M.S. Gumaan, Microstructural and creep characterization of Sn-0.7Cu and Sn-0.7Cu-xBi lead-free solders for low cost electronic. Res in Mater 16, 100319 (2022). S. Alsowidy, A.M. Aljarbani, and M.S. Gumaan, Microstructural and creep characterization of Sn-0.7Cu and Sn-0.7Cu-xBi lead-free solders for low cost electronic. Res in Mater 16, 100319 (2022).
29.
go back to reference H.A. Jaffery, M.F.M. Sabri, S.M. Said, S.W. Hasan, I.H. Sajid, N.I.M. Nordin, M.M.I.M. Hasnan, D.A. Shnawah, and C.V.K.N.S.N. Moorthy, Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J. Alloys Compd. 810, 151925 (2019). CrossRef H.A. Jaffery, M.F.M. Sabri, S.M. Said, S.W. Hasan, I.H. Sajid, N.I.M. Nordin, M.M.I.M. Hasnan, D.A. Shnawah, and C.V.K.N.S.N. Moorthy, Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron. J. Alloys Compd. 810, 151925 (2019). CrossRef
30.
go back to reference H.P.R. Frederikse, R.J. Fields, and A. Feldman, Thermal and electrical properties of coppertin and nickeltin intermetallics. J. Appl. Phys. 72, 2879 (1992). CrossRef H.P.R. Frederikse, R.J. Fields, and A. Feldman, Thermal and electrical properties of coppertin and nickeltin intermetallics. J. Appl. Phys. 72, 2879 (1992). CrossRef
Metadata
Title
Tailoring Microstructural and Electrical Properties of Hypoeutectic Sn-Cu Through Ni Doping
Authors
S. L. A. Dantas
A. L. R. Souza
J. E. Spinelli
M. A. Correa
B. L. Silva
Publication date
20-09-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 12/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10713-2

Other articles of this Issue 12/2023

Journal of Electronic Materials 12/2023 Go to the issue