Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Tailoring Nonlinear Normal Modes and Managing Bifurcations

Authors : G. Kerschen, T. Detroux, G. Habib

Published in: Exploiting the Use of Strong Nonlinearity in Dynamics and Acoustics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this Chapter is to demonstrate how the intentional utilization of nonlinearity can bring important benefits in the area of engineering design. Two different applications are considered, namely (i) the tailoring of the nonlinear normal modes of a structure through the addition of a nonlinearity and (ii) the management of the bifurcations of a structure through the addition of a nonlinear tuned vibration absorber.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Antonio, D., Zanette, D. H., & Lopez, D. (2012). Frequency stabilization in nonlinear micromechanical oscillators. Nature Communications, 3, 806.CrossRef Antonio, D., Zanette, D. H., & Lopez, D. (2012). Frequency stabilization in nonlinear micromechanical oscillators. Nature Communications, 3, 806.CrossRef
go back to reference Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials, 10, 665–668.CrossRef Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials, 10, 665–668.CrossRef
go back to reference Coudeyras, N., Sinou, J. J., & Nacivet, S. (2009). A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The constrained harmonic balance method with application to disc brake squeal. Journal of Sound and Vibration, 379, 1175–1199.CrossRef Coudeyras, N., Sinou, J. J., & Nacivet, S. (2009). A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The constrained harmonic balance method with application to disc brake squeal. Journal of Sound and Vibration, 379, 1175–1199.CrossRef
go back to reference Denegri, C. M., Jr. (2000). Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 37, 761–769.CrossRef Denegri, C. M., Jr. (2000). Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 37, 761–769.CrossRef
go back to reference Depouhon, A., & Detournay, E. (2014). Instability regimes and self-excited vibrations in deep drilling systems. Journal of Sound and Vibration, 333, 2019–2039.CrossRef Depouhon, A., & Detournay, E. (2014). Instability regimes and self-excited vibrations in deep drilling systems. Journal of Sound and Vibration, 333, 2019–2039.CrossRef
go back to reference Detroux, T., Renson, L., Masset, L., & Kerschen, G. (2015). The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Computer Methods in Applied Mechanics and Engineering, 296, 18–38.MathSciNetCrossRef Detroux, T., Renson, L., Masset, L., & Kerschen, G. (2015). The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Computer Methods in Applied Mechanics and Engineering, 296, 18–38.MathSciNetCrossRef
go back to reference Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. Journal ACM Transactions on Mathematical Software, 29, 141–164.MathSciNetCrossRef Dhooge, A., Govaerts, W., & Kuznetsov, Y. A. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. Journal ACM Transactions on Mathematical Software, 29, 141–164.MathSciNetCrossRef
go back to reference Domany, E., & Gendelman, O. V. (2013). Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. Journal of Sound and Vibration, 332, 5489–5507.CrossRef Domany, E., & Gendelman, O. V. (2013). Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. Journal of Sound and Vibration, 332, 5489–5507.CrossRef
go back to reference Dou, S., Strachan, B. S., Shaw, S. W., & Jensen, J. S. (2015). Structural optimization for nonlinear dynamic response. Philosophical Transactions of the Royal Society A, 373, 20140408.MathSciNetCrossRef Dou, S., Strachan, B. S., Shaw, S. W., & Jensen, J. S. (2015). Structural optimization for nonlinear dynamic response. Philosophical Transactions of the Royal Society A, 373, 20140408.MathSciNetCrossRef
go back to reference Ebelin, W., Herzel, H., Richert, W., & Schimansky-Geier, L. (1986). Influence of noise on Duffing-Van der Pol oscillators. Journal of Applied Mathematics and Mechanics, 66, 141–146.MathSciNet Ebelin, W., Herzel, H., Richert, W., & Schimansky-Geier, L. (1986). Influence of noise on Duffing-Van der Pol oscillators. Journal of Applied Mathematics and Mechanics, 66, 141–146.MathSciNet
go back to reference Fujino, Y., & Abe, M. (1993). Design formulas for tuned mass dampers based on a perturbation technique. Earthquake Engineering and Structural Dynamics, 22, 833–854.CrossRef Fujino, Y., & Abe, M. (1993). Design formulas for tuned mass dampers based on a perturbation technique. Earthquake Engineering and Structural Dynamics, 22, 833–854.CrossRef
go back to reference Gattulli, V., Di Fabio, F., & Luongo, A. (2001). Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. Journal of the Franklin Institute, 338, 187–201.MathSciNetCrossRef Gattulli, V., Di Fabio, F., & Luongo, A. (2001). Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. Journal of the Franklin Institute, 338, 187–201.MathSciNetCrossRef
go back to reference Gattulli, V., Di Fabio, F., & Luongo, A. (2003). One to one resonant double hopf bifurcation in aeroelastic oscillators with tuned mass dampers. Journal of Sound and Vibration, 262, 201–217.CrossRef Gattulli, V., Di Fabio, F., & Luongo, A. (2003). One to one resonant double hopf bifurcation in aeroelastic oscillators with tuned mass dampers. Journal of Sound and Vibration, 262, 201–217.CrossRef
go back to reference Gattulli, V., Di Fabio, F., & Luongo, A. (2004). Nonlinear tuned mass damper for self-excited oscillations. Wind and Structures, 7, 251–264.CrossRef Gattulli, V., Di Fabio, F., & Luongo, A. (2004). Nonlinear tuned mass damper for self-excited oscillations. Wind and Structures, 7, 251–264.CrossRef
go back to reference Gendelman, O. V., & Bar, T. (2010). Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D, 239, 220–229.MathSciNetCrossRef Gendelman, O. V., & Bar, T. (2010). Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D, 239, 220–229.MathSciNetCrossRef
go back to reference Gendelman, O. V., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2010). Asymptotic analysis of passive suppression mechanisms for aeroelastic instabilities in a rigid wing in subsonic flow. SIAM Journal on Applied Mathematics, 70(5), 1655–1677.CrossRef Gendelman, O. V., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2010). Asymptotic analysis of passive suppression mechanisms for aeroelastic instabilities in a rigid wing in subsonic flow. SIAM Journal on Applied Mathematics, 70(5), 1655–1677.CrossRef
go back to reference Grenat, C., Baguet, S., Larmarque, C. H., & Dufour, R. (2019). A multi-parametric recursive continuation method for nonlinear dynamical systems. Mechanical Systems and Signal Processing, 127, 276–289.CrossRef Grenat, C., Baguet, S., Larmarque, C. H., & Dufour, R. (2019). A multi-parametric recursive continuation method for nonlinear dynamical systems. Mechanical Systems and Signal Processing, 127, 276–289.CrossRef
go back to reference Griffin, O. M., & Skop, R. A. (1973). The vortex-excited resonant vibrations of circular cylinders. Journal of Sound and Vibration, 31, 235–249.CrossRef Griffin, O. M., & Skop, R. A. (1973). The vortex-excited resonant vibrations of circular cylinders. Journal of Sound and Vibration, 31, 235–249.CrossRef
go back to reference Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vectors fields. NY: Springer.CrossRef Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vectors fields. NY: Springer.CrossRef
go back to reference Habib, G., Rega, G., & Stepan, G. (2012). Nonlinear bifurcation analysis of a single-DoF model of a robotic arm subject to digital position control. Journal of Computational Nonlinear Dynamics, 8, 011009.CrossRef Habib, G., Rega, G., & Stepan, G. (2012). Nonlinear bifurcation analysis of a single-DoF model of a robotic arm subject to digital position control. Journal of Computational Nonlinear Dynamics, 8, 011009.CrossRef
go back to reference Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2014). Nonlinear generalization of Den Hartog’s equal peak method. Mechanical Systems and Signal Processing, 52–53, 17–28. Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2014). Nonlinear generalization of Den Hartog’s equal peak method. Mechanical Systems and Signal Processing, 52–53, 17–28.
go back to reference Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2015). Nonlinear generalization of the Den Hartog’s equal-peak method. Mechanical Systems and Signal Processing, 52–53, 17–28.CrossRef Habib, G., Detroux, T., Viguié, R., & Kerschen, G. (2015). Nonlinear generalization of the Den Hartog’s equal-peak method. Mechanical Systems and Signal Processing, 52–53, 17–28.CrossRef
go back to reference Habib, G., Grappasonni, C., & Kerschen, G. (2016). Passive linearization of nonlinear resonances. Journal of Applied Physics, 120, 044901.CrossRef Habib, G., Grappasonni, C., & Kerschen, G. (2016). Passive linearization of nonlinear resonances. Journal of Applied Physics, 120, 044901.CrossRef
go back to reference Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. Journal of Manufacturing Science and Engineering, 94, 119–125. Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. Journal of Manufacturing Science and Engineering, 94, 119–125.
go back to reference Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. ASME Journal of Engineering for Industry, 94(1), 119–125.CrossRef Haxton, R. S., & Barr, A. D. S. (1972). The autoparametric vibration absorber. ASME Journal of Engineering for Industry, 94(1), 119–125.CrossRef
go back to reference Ji, J. C., & Hansen, C. H. (2006). Stability and dynamics of a controlled van der Pol-Duffing oscillator. Chaos Solitons and Fractals, 28, 555–570.MathSciNetCrossRef Ji, J. C., & Hansen, C. H. (2006). Stability and dynamics of a controlled van der Pol-Duffing oscillator. Chaos Solitons and Fractals, 28, 555–570.MathSciNetCrossRef
go back to reference Karami, A., & Inman, D. J. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesting. Applied Physics Letters, 100, 042901.CrossRef Karami, A., & Inman, D. J. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesting. Applied Physics Letters, 100, 042901.CrossRef
go back to reference Kerschen, G., Peeters, M., Golinval, J. C., & Vakakis, A. F. (2009). Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1), 170–194.CrossRef Kerschen, G., Peeters, M., Golinval, J. C., & Vakakis, A. F. (2009). Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1), 170–194.CrossRef
go back to reference Ko, J., Kurdila, A., & Strganac, T. (1997). Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control and Dynamics, 20, 1181–1189.CrossRef Ko, J., Kurdila, A., & Strganac, T. (1997). Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control and Dynamics, 20, 1181–1189.CrossRef
go back to reference Kovacic, I., & Rand, R. H. (2013). About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dynamics, 74, 455–465.MathSciNetCrossRef Kovacic, I., & Rand, R. H. (2013). About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dynamics, 74, 455–465.MathSciNetCrossRef
go back to reference Kuznestov, Y. A. (1998). Elements of Applied Bifurcation Theory (2nd ed.). New York: Springer. Kuznestov, Y. A. (1998). Elements of Applied Bifurcation Theory (2nd ed.). New York: Springer.
go back to reference Lacarbonara, W., & Cetraro, M. (2011). Flutter control of a lifting surface via visco-hysteretic vibration absorbers. International Journal of Aeronautical and Space Sciences, 2, 331–345.CrossRef Lacarbonara, W., & Cetraro, M. (2011). Flutter control of a lifting surface via visco-hysteretic vibration absorbers. International Journal of Aeronautical and Space Sciences, 2, 331–345.CrossRef
go back to reference Lee, Y. S., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2006). Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive nonlinear energy sinks. Structural Control and Health Monitoring, 13, 41–47.CrossRef Lee, Y. S., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2006). Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive nonlinear energy sinks. Structural Control and Health Monitoring, 13, 41–47.CrossRef
go back to reference Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part I: Theory, AIAA Journal, 45(3), 693–711. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part I: Theory, AIAA Journal, 45(3), 693–711.
go back to reference Lee, Y. S., Kerschen, G., McFarland, D. M., Hill, W. J., Nichkawde, C., Strganac, T. W., Bergman, L. A., & Vakakis, A. F. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part II: Experiments, AIAA Journal, 45(12), 2391–2400. Lee, Y. S., Kerschen, G., McFarland, D. M., Hill, W. J., Nichkawde, C., Strganac, T. W., Bergman, L. A., & Vakakis, A. F. (2007). Suppression of aeroelastic instability by means of broadband passive targeted energy transfers. Part II: Experiments, AIAA Journal, 45(12), 2391–2400.
go back to reference Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2008). Enhancing robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46(6), 1371–1394.CrossRef Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., & Kerschen, G. (2008). Enhancing robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46(6), 1371–1394.CrossRef
go back to reference Lee, Y. S., Vakakis, A. F., McFarland, D. M., & Bergman, L. A. (2010). Non-linear system identification of the dynamics of aeroelastic instability suppression based on targeted energy transfers. The Aeronautical Journal of the Royal Aeronautical Society, 114(1152), 61–82. Lee, Y. S., Vakakis, A. F., McFarland, D. M., & Bergman, L. A. (2010). Non-linear system identification of the dynamics of aeroelastic instability suppression based on targeted energy transfers. The Aeronautical Journal of the Royal Aeronautical Society, 114(1152), 61–82.
go back to reference Li, X., Ji, J. C., Hansen, C. H., & Tan, C. (2006). The response of a Duffing-van der Pol oscillator under delayed feedback control. Journal of Sound and Vibration, 291, 644–655.MathSciNetCrossRef Li, X., Ji, J. C., Hansen, C. H., & Tan, C. (2006). The response of a Duffing-van der Pol oscillator under delayed feedback control. Journal of Sound and Vibration, 291, 644–655.MathSciNetCrossRef
go back to reference Luongo, A., & Zulli, D. (2014). Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. Journal of Vibration and Control, 20, 1985–1998.CrossRef Luongo, A., & Zulli, D. (2014). Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. Journal of Vibration and Control, 20, 1985–1998.CrossRef
go back to reference Mann, B. P., Bayly, P. V., Davies, M. A., & Halley, J. E. (2004). Limit cycles, bifurcations and accuracy of the milling process. Journal of Sound and Vibration, 277, 31–48.CrossRef Mann, B. P., Bayly, P. V., Davies, M. A., & Halley, J. E. (2004). Limit cycles, bifurcations and accuracy of the milling process. Journal of Sound and Vibration, 277, 31–48.CrossRef
go back to reference Mansour, W. M. (1972). Quenching of limit cycles of a van der Pol oscillator. Journal of Sound and Vibration, 25, 395–405.CrossRef Mansour, W. M. (1972). Quenching of limit cycles of a van der Pol oscillator. Journal of Sound and Vibration, 25, 395–405.CrossRef
go back to reference Natsiavas, S. (1993). Vibration absorbers for a class of self-excited mechanical systems. Journal of Applied Mechanics, 60, 382–387.CrossRef Natsiavas, S. (1993). Vibration absorbers for a class of self-excited mechanical systems. Journal of Applied Mechanics, 60, 382–387.CrossRef
go back to reference Nayfeh, A. H., & Balachandran, B. (2007). Applied nonlinear dynamics, analytical, computational, and experimental methods. New York: Wiley. Nayfeh, A. H., & Balachandran, B. (2007). Applied nonlinear dynamics, analytical, computational, and experimental methods. New York: Wiley.
go back to reference Niculescu, S. I., & Gu, K. (2004). Advances in time-delay systems. Berlin, Germany: Springer.CrossRef Niculescu, S. I., & Gu, K. (2004). Advances in time-delay systems. Berlin, Germany: Springer.CrossRef
go back to reference Oueini, S. S., Nayfeh, A. H., & Pratt, J. R. (1998). A nonlinear vibration absorber for flexible structures. Nonlinear Dynamics, 15, 259–282.CrossRef Oueini, S. S., Nayfeh, A. H., & Pratt, J. R. (1998). A nonlinear vibration absorber for flexible structures. Nonlinear Dynamics, 15, 259–282.CrossRef
go back to reference Papatheou, E., Tantaroudas, N. D., Da Ronch, A., Cooper, J. E., & Mottershead, J. E. (2013). Active control for flutter suppression: An experimental investigation. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Bristol, UK. Papatheou, E., Tantaroudas, N. D., Da Ronch, A., Cooper, J. E., & Mottershead, J. E. (2013). Active control for flutter suppression: An experimental investigation. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Bristol, UK.
go back to reference Petrov, E. P. (2007). Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed disks. ASME Journal of Turbomachinery, 129(3), 495–502.CrossRef Petrov, E. P. (2007). Direct parametric analysis of resonance regimes for nonlinear vibrations of bladed disks. ASME Journal of Turbomachinery, 129(3), 495–502.CrossRef
go back to reference Potekin, R., Asadi, K., Kim, S., Bergman, L. A., Vakakis, A. F., & Cho, H. (2020). Ultrabroadband microresonators with geometrically nonlinear stiffness and dissipation. Physical Review Applied, 13, 014011.CrossRef Potekin, R., Asadi, K., Kim, S., Bergman, L. A., Vakakis, A. F., & Cho, H. (2020). Ultrabroadband microresonators with geometrically nonlinear stiffness and dissipation. Physical Review Applied, 13, 014011.CrossRef
go back to reference Renault, A., Thomas, O., & Mahé, H. (2019). Numerical antiresonance continuation of structural systems. Mechanical Systems and Signal Processing, 116, 963–984.CrossRef Renault, A., Thomas, O., & Mahé, H. (2019). Numerical antiresonance continuation of structural systems. Mechanical Systems and Signal Processing, 116, 963–984.CrossRef
go back to reference Rowbottom, M. D. (1981). The optimization of mechanical dampers to control self-excited galloping oscillations. Journal of Sound and Vibration, 75, 559–576.CrossRef Rowbottom, M. D. (1981). The optimization of mechanical dampers to control self-excited galloping oscillations. Journal of Sound and Vibration, 75, 559–576.CrossRef
go back to reference Seydel, R. (2010). Practical bifurcation and stability analysis. New-York, NY: Springer.CrossRef Seydel, R. (2010). Practical bifurcation and stability analysis. New-York, NY: Springer.CrossRef
go back to reference Spadoni, A., & Daraio, C. (2010). Generation and control of sound bullets with a nonlinear acoustic lens. Proceedings of the National Academy of Sciences, 107, 7230.CrossRef Spadoni, A., & Daraio, C. (2010). Generation and control of sound bullets with a nonlinear acoustic lens. Proceedings of the National Academy of Sciences, 107, 7230.CrossRef
go back to reference Stepan, G. (1989). Retarded dynamical systems: Stability and characteristic functions. UK: Longman. Stepan, G. (1989). Retarded dynamical systems: Stability and characteristic functions. UK: Longman.
go back to reference Stepan, G. (2001). Modelling nonlinear regenerative effects in metal cutting. Philosophical Transactions of the Royal Society A, 359, 739–757.CrossRef Stepan, G. (2001). Modelling nonlinear regenerative effects in metal cutting. Philosophical Transactions of the Royal Society A, 359, 739–757.CrossRef
go back to reference Strachan, B. S., Shaw, S. W., & Kogan, O. (2013). Subharmonic resonance cascades in a class of coupled resonators. Journal of Computation and Nonlinear Dynamics, 8(4), 041015.CrossRef Strachan, B. S., Shaw, S. W., & Kogan, O. (2013). Subharmonic resonance cascades in a class of coupled resonators. Journal of Computation and Nonlinear Dynamics, 8(4), 041015.CrossRef
go back to reference Szemplinska-Stupnicka, W., & Rudowski, J. (1997). The coexistence of periodic, almost periodic and chaotic attractors in the Van der Pol-Duffing oscillator. Journal of Sound and Vibration, 199, 165–175.MathSciNetCrossRef Szemplinska-Stupnicka, W., & Rudowski, J. (1997). The coexistence of periodic, almost periodic and chaotic attractors in the Van der Pol-Duffing oscillator. Journal of Sound and Vibration, 199, 165–175.MathSciNetCrossRef
go back to reference Tondl, A. (1975). Quenching of self-excited vibrations equilibrium aspects. Journal of Sound and Vibration, 42, 251–260.CrossRef Tondl, A. (1975). Quenching of self-excited vibrations equilibrium aspects. Journal of Sound and Vibration, 42, 251–260.CrossRef
go back to reference Trickey, S. T., Virgin, L. N., & Dowell, E. H. (2002). The stability of limit cycle oscillations in a nonlinear aeroelastic system. Proceedings of the Royal Society A, 458, 2203–2226.MathSciNetCrossRef Trickey, S. T., Virgin, L. N., & Dowell, E. H. (2002). The stability of limit cycle oscillations in a nonlinear aeroelastic system. Proceedings of the Royal Society A, 458, 2203–2226.MathSciNetCrossRef
go back to reference Tumkur, R. K. R., Calderer, R., Masud, A., Bergman, L. A., Pearlstein, A. J., & Vakakis, A. F. (2013). Computational study of vortex-induced vibrations of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. Journal of Fluids and Structures, 40, 214–232.CrossRef Tumkur, R. K. R., Calderer, R., Masud, A., Bergman, L. A., Pearlstein, A. J., & Vakakis, A. F. (2013). Computational study of vortex-induced vibrations of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. Journal of Fluids and Structures, 40, 214–232.CrossRef
go back to reference Vakakis, A. F., Gendelman O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., & Lee, Y. S. (2009) Nonlinear targeted energy transfer in mechanical and structural systems. Springer. Vakakis, A. F., Gendelman O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., & Lee, Y. S. (2009) Nonlinear targeted energy transfer in mechanical and structural systems. Springer.
go back to reference van Dijk, N. J. M., van de Wouw, N., Doppenberg, E. J. J., Oosterling, J. A. J., & Nijmeijer, H. (2012). Robust active chatter control in the high-speed milling process. IEEE Transactions on Control Systems Technology, 20, 901–917.CrossRef van Dijk, N. J. M., van de Wouw, N., Doppenberg, E. J. J., Oosterling, J. A. J., & Nijmeijer, H. (2012). Robust active chatter control in the high-speed milling process. IEEE Transactions on Control Systems Technology, 20, 901–917.CrossRef
go back to reference von Wagner, U., Hochlenert, D., & Hagedorn, P. (2007). Minimal models for disk brake squeal. Journal of Sound and Vibration, 302, 527–539.CrossRef von Wagner, U., Hochlenert, D., & Hagedorn, P. (2007). Minimal models for disk brake squeal. Journal of Sound and Vibration, 302, 527–539.CrossRef
go back to reference Vyas, A., & Bajaj, A. K. (2001). Dynamics of autoparametric vibration absorbers using multiple pendulums. Journal of Sound and Vibration, 246, 115–135.MathSciNetCrossRef Vyas, A., & Bajaj, A. K. (2001). Dynamics of autoparametric vibration absorbers using multiple pendulums. Journal of Sound and Vibration, 246, 115–135.MathSciNetCrossRef
go back to reference Xu, J., & Chung, K. W. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 180, 17–39.MathSciNetCrossRef Xu, J., & Chung, K. W. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 180, 17–39.MathSciNetCrossRef
Metadata
Title
Tailoring Nonlinear Normal Modes and Managing Bifurcations
Authors
G. Kerschen
T. Detroux
G. Habib
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_3

Premium Partners