Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Tailoring Performance of Polymer Electrolytes Through Formulation Design

Authors : Wei Wang, Dmitry Bedrov, Paschalis Alexandridis

Published in: Polymer-Engineered Nanostructures for Advanced Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flammable organic solvent-based electrolytes used in lithium batteries impose serious safety concerns and temperature restrictions. A switch to solid polymer electrolytes can significantly increase chemical/mechanical stability, improve safety, reduce cost, and advance manufacturability, if only issues such as low conductivity and transference, limited operating temperature range, and insufficient mechanical strength can be overcome. To this end, significant research efforts have been directed to understand the mechanism of lithium ion motion in polymer matrices and to modify the chemistry, architecture, and morphology of the poly(ethylene oxide) polymer typically used in polymer electrolytes. Furthermore, the incorporation of nanoparticles into polymer electrolytes has created new opportunities for simultaneous improvement of conductivity and of mechanical properties. The performance of such composite polymer electrolytes can be modulated by the judicious surface chemical modification of the nanoparticles and/or by the addition of organic solvents or ionic liquids. The examples highlighted here point to the importance of formulation design for the improvement of the performance characteristics of multi-component systems such as polymer electrolytes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Scrosati B (1995) Battery technology-challenge of portable power. Nature 373(6515):557–558CrossRef Scrosati B (1995) Battery technology-challenge of portable power. Nature 373(6515):557–558CrossRef
2.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
3.
go back to reference Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng, R 33(4):109–134CrossRef Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng, R 33(4):109–134CrossRef
4.
go back to reference Yoo HD, Markevich E, Salitra G et al (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17(3):110–121CrossRef Yoo HD, Markevich E, Salitra G et al (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17(3):110–121CrossRef
5.
go back to reference Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4269CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4269CrossRef
6.
go back to reference Antunes RA, de Oliveira MCL, Ett G et al (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells a review of the main challenges to improve electrical performance. J Power Sources 196(6):2945–2961CrossRef Antunes RA, de Oliveira MCL, Ett G et al (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells a review of the main challenges to improve electrical performance. J Power Sources 196(6):2945–2961CrossRef
7.
go back to reference Frederick T, Wagner BL, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219CrossRef Frederick T, Wagner BL, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219CrossRef
8.
go back to reference Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef
9.
go back to reference Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRef Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRef
10.
go back to reference Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575 Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575
11.
go back to reference Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42(6):713–723CrossRef Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42(6):713–723CrossRef
12.
go back to reference Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618CrossRef Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618CrossRef
13.
go back to reference Scrosati B, Vincent CA (2000) Polymer electrolytes the key to lithium polymer batteries. MRS Bull 25(3):28–30CrossRef Scrosati B, Vincent CA (2000) Polymer electrolytes the key to lithium polymer batteries. MRS Bull 25(3):28–30CrossRef
14.
go back to reference Kalhoff J, Eshetu GG, Bresser D et al (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8(13):2154–2175CrossRef Kalhoff J, Eshetu GG, Bresser D et al (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8(13):2154–2175CrossRef
15.
go back to reference Cheng FY, Liang J, Tao ZL et al (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715CrossRef Cheng FY, Liang J, Tao ZL et al (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715CrossRef
16.
go back to reference Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417CrossRef Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417CrossRef
17.
go back to reference Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540CrossRef Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540CrossRef
19.
go back to reference He ZQ, Alexandridis P (2015) Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 17(28):18238–18261CrossRef He ZQ, Alexandridis P (2015) Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 17(28):18238–18261CrossRef
20.
go back to reference Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11(1):91–95CrossRef Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11(1):91–95CrossRef
21.
22.
go back to reference Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589 Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589
23.
go back to reference Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect polymers structure and properties. Polymers 8(11):387 Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect polymers structure and properties. Polymers 8(11):387
24.
go back to reference Florjanczyk Z, Marcinek M, Wieczorek W et al (2004) Review of PEO based composite polymer electrolytes. Pol J Chem 78(9):1279–1304 Florjanczyk Z, Marcinek M, Wieczorek W et al (2004) Review of PEO based composite polymer electrolytes. Pol J Chem 78(9):1279–1304
25.
go back to reference Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110(1–2):1–14CrossRef Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110(1–2):1–14CrossRef
26.
go back to reference Jung S (2009) Fillers for solid-state polymer electrolytes. Bull Korean Chem Soc 30(10):2355–2361CrossRef Jung S (2009) Fillers for solid-state polymer electrolytes. Bull Korean Chem Soc 30(10):2355–2361CrossRef
27.
go back to reference Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964CrossRef Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964CrossRef
28.
go back to reference Baldwin RS, Bennett WR (2007) The NASA “PERS” program: solid polymer electrolyte development for advanced lithium-based batteries Baldwin RS, Bennett WR (2007) The NASA “PERS” program: solid polymer electrolyte development for advanced lithium-based batteries
29.
go back to reference Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecles 39(4):1620–1629CrossRef Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecles 39(4):1620–1629CrossRef
30.
go back to reference Borodin O, Smith GD (2007) Molecular dynamics simulations of comb-branched poly(epoxide ether)-based polymer electrolytes. Macromolecles 40(4):1252–1258CrossRef Borodin O, Smith GD (2007) Molecular dynamics simulations of comb-branched poly(epoxide ether)-based polymer electrolytes. Macromolecles 40(4):1252–1258CrossRef
31.
go back to reference Borodin O, Smith GD, Bandyopadhyaya R et al (2004) Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Modell Simul Mater Sci En 12(3):S73–S89CrossRef Borodin O, Smith GD, Bandyopadhyaya R et al (2004) Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Modell Simul Mater Sci En 12(3):S73–S89CrossRef
32.
go back to reference Brandell D, Priimägi P, Kasemägi H et al (2011) Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes a molecular dynamics study. Electrochim Acta 57:228–236CrossRef Brandell D, Priimägi P, Kasemägi H et al (2011) Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes a molecular dynamics study. Electrochim Acta 57:228–236CrossRef
33.
go back to reference Ferreira B, Mullerplathe F, Bernardes A et al (2002) A comparison of Li+ transport in dimethoxyethane, poly(ethylene oxide) and poly(tetramethylene oxide) by molecular dynamics simulations. Solid State Ionics 147(3–4):361–366CrossRef Ferreira B, Mullerplathe F, Bernardes A et al (2002) A comparison of Li+ transport in dimethoxyethane, poly(ethylene oxide) and poly(tetramethylene oxide) by molecular dynamics simulations. Solid State Ionics 147(3–4):361–366CrossRef
34.
go back to reference Hektor A, Klintenberg MK, Aabloo A et al (2002) Molecular dynamics simulation of the effect of a side chain on the dynamics of the amorphous LiPF6–PEO system. J Mater Chem 13(2):214–218CrossRef Hektor A, Klintenberg MK, Aabloo A et al (2002) Molecular dynamics simulation of the effect of a side chain on the dynamics of the amorphous LiPF6–PEO system. J Mater Chem 13(2):214–218CrossRef
35.
go back to reference Karo J, Brandell D (2009) A molecular dynamics study of the influence of side-chain length and spacing on lithium mobility in non-crystalline LiPF6·PEO x ; x = 10 and 30. Solid State Ionics 180(23–25):1272–1284CrossRef Karo J, Brandell D (2009) A molecular dynamics study of the influence of side-chain length and spacing on lithium mobility in non-crystalline LiPF6·PEO x ; x = 10 and 30. Solid State Ionics 180(23–25):1272–1284CrossRef
36.
go back to reference Maitra A, Heuer A (2007) Understanding segmental dynamics in polymer electrolytes: a computer study. Macromol Chem Phys 208(19–20):2215–2221CrossRef Maitra A, Heuer A (2007) Understanding segmental dynamics in polymer electrolytes: a computer study. Macromol Chem Phys 208(19–20):2215–2221CrossRef
37.
go back to reference Müller-Plathe F, van Gunsteren WF (1995) Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly(ethylene oxide). J Chem Phys 103(11):4745–4756 Müller-Plathe F, van Gunsteren WF (1995) Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly(ethylene oxide). J Chem Phys 103(11):4745–4756
38.
go back to reference Siqueira LJA, Ribeiro MCC (2005) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4 structural properties. J Chem Phys 122(19):194911CrossRef Siqueira LJA, Ribeiro MCC (2005) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4 structural properties. J Chem Phys 122(19):194911CrossRef
39.
go back to reference Siqueira LJA, Ribeiro MCC (2006) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4 II dynamical properties. J Chem Phys 125(21):214903CrossRef Siqueira LJA, Ribeiro MCC (2006) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4 II dynamical properties. J Chem Phys 125(21):214903CrossRef
40.
go back to reference Snyder J (2002) Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics 147(3–4):249–257 Snyder J (2002) Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics 147(3–4):249–257
41.
go back to reference Diddens D, Heuer A, Borodin O (2010) Understanding the lithium transport within a rouse-based model for a PEO/LiTFSI polymer electrolyte. Macromolecules 43(4):2028–2036CrossRef Diddens D, Heuer A, Borodin O (2010) Understanding the lithium transport within a rouse-based model for a PEO/LiTFSI polymer electrolyte. Macromolecules 43(4):2028–2036CrossRef
42.
go back to reference Sutjianto A, Curtiss LA (1998) Li+-diglyme complexes: barriers to lithium cation migration. J Phys Chem A 102(6):968–974CrossRef Sutjianto A, Curtiss LA (1998) Li+-diglyme complexes: barriers to lithium cation migration. J Phys Chem A 102(6):968–974CrossRef
43.
go back to reference Borodin O, Smith GD (2007) Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates. J Solution Chem 36(6):803–813CrossRef Borodin O, Smith GD (2007) Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates. J Solution Chem 36(6):803–813CrossRef
44.
go back to reference Li Z, Smith GD, Bedrov D (2012) Li+ Solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study. J Phys Chem B 116(42):12801–12809CrossRef Li Z, Smith GD, Bedrov D (2012) Li+ Solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study. J Phys Chem B 116(42):12801–12809CrossRef
45.
go back to reference Borodin O, Smith GD (2006) Development of many-body polarizable force fields for Li-battery applications. J Phys Chem B 110(12):6293–6299 Borodin O, Smith GD (2006) Development of many-body polarizable force fields for Li-battery applications. J Phys Chem B 110(12):6293–6299
46.
go back to reference Hayamizu K, Akiba E, Bando T et al (2002) H-1, Li-7, and F-19 nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O) n CH3 (n = 3–50) doped with LiN(SO2CF3)2. J Chem Phys 117(12):5929–5939CrossRef Hayamizu K, Akiba E, Bando T et al (2002) H-1, Li-7, and F-19 nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O) n CH3 (n = 3–50) doped with LiN(SO2CF3)2. J Chem Phys 117(12):5929–5939CrossRef
47.
go back to reference Edman L, Ferry A, Orädd G (2002) Analysis of diffusion in a solid polymer electrolyte in the context of a phase-separated system. Phys Rev E 65(4):042803CrossRef Edman L, Ferry A, Orädd G (2002) Analysis of diffusion in a solid polymer electrolyte in the context of a phase-separated system. Phys Rev E 65(4):042803CrossRef
48.
go back to reference Lascaud S (1994) Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromol 27(25):7469–7477 Lascaud S (1994) Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromol 27(25):7469–7477
49.
go back to reference Voege A, Deimede V, Paloukis F et al (2014) Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries. Mater Chem Phys 148(1–2):57–66CrossRef Voege A, Deimede V, Paloukis F et al (2014) Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries. Mater Chem Phys 148(1–2):57–66CrossRef
50.
go back to reference Buriez O, Han YB, Hou J et al (2000) Performance limitations of polymer electrolytes based on ethylene oxide polymers. J Power Sources 89(2):149–155CrossRef Buriez O, Han YB, Hou J et al (2000) Performance limitations of polymer electrolytes based on ethylene oxide polymers. J Power Sources 89(2):149–155CrossRef
51.
go back to reference Kerr JB, Sloop SE, Liu G et al (2002) From molecular models to system analysis for lithium battery electrolytes. J Power Sources 110(2):389–400CrossRef Kerr JB, Sloop SE, Liu G et al (2002) From molecular models to system analysis for lithium battery electrolytes. J Power Sources 110(2):389–400CrossRef
52.
go back to reference Smith GD, Borodin O (2012) Lithium battery electrolyte stability and performance from molecular modeling and simulations. In: Batteries for sustainability. Springer Science Business Media, New York, pp 195–237 Smith GD, Borodin O (2012) Lithium battery electrolyte stability and performance from molecular modeling and simulations. In: Batteries for sustainability. Springer Science Business Media, New York, pp 195–237
53.
go back to reference Wu H, Wick CD (2010) Computational investigation on the role of plasticizers on ion conductivity in poly(ethylene oxide) LiTFSI electrolytes. Macromolecules 43(7):3502–3510CrossRef Wu H, Wick CD (2010) Computational investigation on the role of plasticizers on ion conductivity in poly(ethylene oxide) LiTFSI electrolytes. Macromolecules 43(7):3502–3510CrossRef
54.
go back to reference Meziane R, Bonnet JP, Courty M et al (2011) Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta 57:14–19CrossRef Meziane R, Bonnet JP, Courty M et al (2011) Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta 57:14–19CrossRef
55.
go back to reference Inceoglu S, Rojas AA, Devaux D et al (2014) Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Letters 3(6):510–514 Inceoglu S, Rojas AA, Devaux D et al (2014) Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Letters 3(6):510–514
56.
go back to reference Amine K, Wang Q, Vissers DR et al (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8(3):429–433CrossRef Amine K, Wang Q, Vissers DR et al (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8(3):429–433CrossRef
57.
go back to reference Nakahara H, Tanaka M, Yoon S-Y et al (2006) Electrochemical and thermal stability of a siloxane-based electrolyte on a lithium transition metal oxide cathode. J Power Sources 160(1):645–650CrossRef Nakahara H, Tanaka M, Yoon S-Y et al (2006) Electrochemical and thermal stability of a siloxane-based electrolyte on a lithium transition metal oxide cathode. J Power Sources 160(1):645–650CrossRef
58.
go back to reference Zhang Z, Dong J, West R et al (2010) Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries. J Power Sources 195(18):6062–6068CrossRef Zhang Z, Dong J, West R et al (2010) Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries. J Power Sources 195(18):6062–6068CrossRef
59.
go back to reference Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58(3):267–272CrossRef Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58(3):267–272CrossRef
60.
go back to reference Karatas Y, Kaskhedikar N, Burjanadze M et al (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207(4):419–425CrossRef Karatas Y, Kaskhedikar N, Burjanadze M et al (2006) Synthesis of cross-linked comb polysiloxane for polymer electrolyte membranes. Macromol Chem Phys 207(4):419–425CrossRef
61.
go back to reference Kunze M, Karatas Y, Wiemhöfer H-D et al (2010) Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study. Phys Chem Chem Phys 12(25):6844–6851CrossRef Kunze M, Karatas Y, Wiemhöfer H-D et al (2010) Activation of transport and local dynamics in polysiloxane-based salt-in-polymer electrolytes: a multinuclear NMR study. Phys Chem Chem Phys 12(25):6844–6851CrossRef
62.
go back to reference Zhang Z, Jin J, Bautista F et al (2004) Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes. Solid State Ionics 170(3–4):233–238CrossRef Zhang Z, Jin J, Bautista F et al (2004) Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes. Solid State Ionics 170(3–4):233–238CrossRef
63.
go back to reference Zhang Z, Lyons LJ, West R et al (2007) Synthesis and ionic conductivity of mixed substituted polysiloxanes with oligoethyleneoxy and cyclic carbonate substituents. Silicon Chem 3(5):259–266CrossRef Zhang Z, Lyons LJ, West R et al (2007) Synthesis and ionic conductivity of mixed substituted polysiloxanes with oligoethyleneoxy and cyclic carbonate substituents. Silicon Chem 3(5):259–266CrossRef
64.
go back to reference Ruzette AVG, Soo PP, Sadoway DR et al (2001) Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J Electrochem Soc 148(6):A537–A543CrossRef Ruzette AVG, Soo PP, Sadoway DR et al (2001) Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J Electrochem Soc 148(6):A537–A543CrossRef
65.
go back to reference Chen J, Frisbie CD, Bates FS (2009) Lithium perchlorate-doped poly(styrene-b-ethylene oxide-b-styrene) lamellae-forming triblock copolymer as high capacitance, smooth, thin film dielectric. J Phys Chem C 113(10):3903–3908CrossRef Chen J, Frisbie CD, Bates FS (2009) Lithium perchlorate-doped poly(styrene-b-ethylene oxide-b-styrene) lamellae-forming triblock copolymer as high capacitance, smooth, thin film dielectric. J Phys Chem C 113(10):3903–3908CrossRef
66.
go back to reference Gomez ED, Panday A, Feng EH et al (2009) Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9(3):1212–1216CrossRef Gomez ED, Panday A, Feng EH et al (2009) Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9(3):1212–1216CrossRef
67.
go back to reference Young WS, Epps TH (2009) Salt doping in peo-containing block copolymers: counterion and concentration effects. Macromolecules 42(7):2672–2678CrossRef Young WS, Epps TH (2009) Salt doping in peo-containing block copolymers: counterion and concentration effects. Macromolecules 42(7):2672–2678CrossRef
68.
go back to reference Hallinan DT, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43(1):503–525CrossRef Hallinan DT, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43(1):503–525CrossRef
69.
go back to reference Young WS, Kuan WF, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci Pol Phys 52(1):1–16CrossRef Young WS, Kuan WF, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci Pol Phys 52(1):1–16CrossRef
70.
go back to reference Spontak RJ, Alexandridis P (1999) Advances in self-ordering macromolecules and nanostructure design. Curr Opin Colloid Interface Sci 4(2):140–146CrossRef Spontak RJ, Alexandridis P (1999) Advances in self-ordering macromolecules and nanostructure design. Curr Opin Colloid Interface Sci 4(2):140–146CrossRef
71.
go back to reference Schmidt G, Richtering W, Lindner P et al (1998) Shear orientation of a hexagonal lyotropic triblock copolymer phase as probed by flow birefringence and small-angle light and neutron scattering. Macromolecules 31(7):2293–2298CrossRef Schmidt G, Richtering W, Lindner P et al (1998) Shear orientation of a hexagonal lyotropic triblock copolymer phase as probed by flow birefringence and small-angle light and neutron scattering. Macromolecules 31(7):2293–2298CrossRef
72.
go back to reference Zipfel J, Berghausen J, Schmidt G et al (2002) Influence of shear on solvated amphiphilic block copolymers with lamellar morphology. Macromolecules 35(10):4064–4074CrossRef Zipfel J, Berghausen J, Schmidt G et al (2002) Influence of shear on solvated amphiphilic block copolymers with lamellar morphology. Macromolecules 35(10):4064–4074CrossRef
73.
go back to reference Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475 Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475
74.
go back to reference Edwards EW, Stoykovich MP, Müller M et al (2005) Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. J Polym Sci Pol Phys 43(23):3444–3459CrossRef Edwards EW, Stoykovich MP, Müller M et al (2005) Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. J Polym Sci Pol Phys 43(23):3444–3459CrossRef
75.
go back to reference Golodnitsky D, Peled E (2000) Stretching-induced conductivity enhancement of LiI(PEO)-polymer electrolyte. Electrochim Acta 45(8–9):1431–1436CrossRef Golodnitsky D, Peled E (2000) Stretching-induced conductivity enhancement of LiI(PEO)-polymer electrolyte. Electrochim Acta 45(8–9):1431–1436CrossRef
76.
go back to reference Hu H, Gopinadhan M, Osuji CO (2014) Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10(22):3867CrossRef Hu H, Gopinadhan M, Osuji CO (2014) Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10(22):3867CrossRef
77.
go back to reference Kim JK, Lee JI, Lee DH (2008) Self-assembled block copolymers: bulk to thin film. Macromol Res 16(4):267–292CrossRef Kim JK, Lee JI, Lee DH (2008) Self-assembled block copolymers: bulk to thin film. Macromol Res 16(4):267–292CrossRef
78.
go back to reference Kovarsky R, Golodnitsky D, Peled E et al (2011) Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field. Electrochim Acta 57:27–35CrossRef Kovarsky R, Golodnitsky D, Peled E et al (2011) Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field. Electrochim Acta 57:27–35CrossRef
79.
go back to reference Majewski PW, Gopinadhan M, Jang W-S et al (2010) Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J Am Chem Soc 132(49):17516–17522CrossRef Majewski PW, Gopinadhan M, Jang W-S et al (2010) Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. J Am Chem Soc 132(49):17516–17522CrossRef
80.
go back to reference Marencic AP, Register RA (2010) Controlling order in block copolymer thin films for nanopatterning applications. Annu Rev Chem Biomol Eng 1(1):277–297CrossRef Marencic AP, Register RA (2010) Controlling order in block copolymer thin films for nanopatterning applications. Annu Rev Chem Biomol Eng 1(1):277–297CrossRef
81.
go back to reference Tong Q, Sibener SJ (2014) Electric-field-induced control and switching of block copolymer domain orientations in nanoconfined channel architectures. J Phys Chem C 118(25):13752–13756CrossRef Tong Q, Sibener SJ (2014) Electric-field-induced control and switching of block copolymer domain orientations in nanoconfined channel architectures. J Phys Chem C 118(25):13752–13756CrossRef
82.
go back to reference Li J, Kamata K, Komura M et al (2007) Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromol 40(23):8125–8128CrossRef Li J, Kamata K, Komura M et al (2007) Anisotropic ion conductivity in liquid crystalline diblock copolymer membranes with perpendicularly oriented PEO cylindrical domains. Macromol 40(23):8125–8128CrossRef
83.
go back to reference Sarkar B, Alexandridis P (2015) Block copolymer-nanoparticle composites: structure, functional properties, and processing. Prog Polym Sci 40:33–62CrossRef Sarkar B, Alexandridis P (2015) Block copolymer-nanoparticle composites: structure, functional properties, and processing. Prog Polym Sci 40:33–62CrossRef
84.
go back to reference Young WS, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromol 45(11):4689–4697CrossRef Young WS, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromol 45(11):4689–4697CrossRef
85.
go back to reference Mullin SA, Teran AA, Yuan R et al (2013) Effect of thermal history on the ionic conductivity of block copolymer electrolytes. J Polym Sci Pol Phys 51(12):927–934CrossRef Mullin SA, Teran AA, Yuan R et al (2013) Effect of thermal history on the ionic conductivity of block copolymer electrolytes. J Polym Sci Pol Phys 51(12):927–934CrossRef
86.
go back to reference Chintapalli M, Chen XC, Thelen JL et al (2014) Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromol 47(15):5424–5431CrossRef Chintapalli M, Chen XC, Thelen JL et al (2014) Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromol 47(15):5424–5431CrossRef
87.
go back to reference Weber RL, Ye Y, Schmitt AL et al (2011) Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44(14):5727–5735CrossRef Weber RL, Ye Y, Schmitt AL et al (2011) Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44(14):5727–5735CrossRef
88.
go back to reference Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRef Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRef
89.
go back to reference Rietman EA, Kaplan ML, Cava RJ (1985) Lithium ion-poly (ethylene-oxide) complexes. 1. Effect of anion on conductivity. Solid State Ionics 17(1):67–73CrossRef Rietman EA, Kaplan ML, Cava RJ (1985) Lithium ion-poly (ethylene-oxide) complexes. 1. Effect of anion on conductivity. Solid State Ionics 17(1):67–73CrossRef
90.
go back to reference Vignarooban K, Dissanayake MAKL, Albinsson I et al (2014) Effect of TiO2 nano-filler and ec plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28 Vignarooban K, Dissanayake MAKL, Albinsson I et al (2014) Effect of TiO2 nano-filler and ec plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28
91.
go back to reference Zugmann S, Gores H (2014) Transference numbers of ions in electrolytes. In: Kreysa G, Ota K-I, Savinell R (eds) Encyclopedia of applied electrochemistry. Springer, New York, pp 2086–2091CrossRef Zugmann S, Gores H (2014) Transference numbers of ions in electrolytes. In: Kreysa G, Ota K-I, Savinell R (eds) Encyclopedia of applied electrochemistry. Springer, New York, pp 2086–2091CrossRef
92.
go back to reference Wang XL, Mei A, Li M et al (2007) Polymer composite electrolytes containing ionically active mesoporous SiO2 particles. J Appl Phys 102(5):054907CrossRef Wang XL, Mei A, Li M et al (2007) Polymer composite electrolytes containing ionically active mesoporous SiO2 particles. J Appl Phys 102(5):054907CrossRef
93.
go back to reference Gorecki W, Andreani R, Berthier C et al (1986) NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte: PEO(LiClO4) x . Solid State Ionics 18–9:295–299CrossRef Gorecki W, Andreani R, Berthier C et al (1986) NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte: PEO(LiClO4) x . Solid State Ionics 18–9:295–299CrossRef
94.
go back to reference McLin MG, Angell CA (1996) Probe ion diffusivity measurements in salt-in-polymer electrolytes: stokes radii and the transport number problem. J Phys Chem 100(4):1181–1188 McLin MG, Angell CA (1996) Probe ion diffusivity measurements in salt-in-polymer electrolytes: stokes radii and the transport number problem. J Phys Chem 100(4):1181–1188
95.
go back to reference Abbrent S, Greenbaum S (2013) Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr Opin Colloid Interface Sci 18(3):228–244CrossRef Abbrent S, Greenbaum S (2013) Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr Opin Colloid Interface Sci 18(3):228–244CrossRef
96.
go back to reference Volkov VI, Marinin AA (2013) NMR methods for studying ion and molecular transport in polymer electrolytes. Russ Chem Rev 82(3):248–272CrossRef Volkov VI, Marinin AA (2013) NMR methods for studying ion and molecular transport in polymer electrolytes. Russ Chem Rev 82(3):248–272CrossRef
97.
go back to reference Golodnitsky D, Ardel G, Peled E (2002) Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes. Solid State Ionics 147(1–2):141–155CrossRef Golodnitsky D, Ardel G, Peled E (2002) Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes. Solid State Ionics 147(1–2):141–155CrossRef
98.
go back to reference Ciosek M, Sannier L, Siekierski M et al (2007) Ion transport phenomena in polymeric electrolytes. Electrochim Acta 53(4):1409–1416CrossRef Ciosek M, Sannier L, Siekierski M et al (2007) Ion transport phenomena in polymeric electrolytes. Electrochim Acta 53(4):1409–1416CrossRef
99.
go back to reference Croce F, Persi L, Scrosati B et al (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46(16):2457–2461CrossRef Croce F, Persi L, Scrosati B et al (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46(16):2457–2461CrossRef
100.
go back to reference Wang XL, Mei A, Li M et al (2006) Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes. Solid State Ionics 177(15–16):1287–1291 Wang XL, Mei A, Li M et al (2006) Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes. Solid State Ionics 177(15–16):1287–1291
101.
go back to reference Bandara LRAK, Dissanayake MAKL, Furlani M et al (2000) Broad band dielectric behavior of plasticized PEO-based solid polymer electrolytes. Ionics 6(3–4):239–247CrossRef Bandara LRAK, Dissanayake MAKL, Furlani M et al (2000) Broad band dielectric behavior of plasticized PEO-based solid polymer electrolytes. Ionics 6(3–4):239–247CrossRef
102.
go back to reference Fan L (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164(1–2):81–86CrossRef Fan L (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164(1–2):81–86CrossRef
103.
go back to reference Croce F, Appetecchi GB, Persi L et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458CrossRef Croce F, Appetecchi GB, Persi L et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458CrossRef
104.
go back to reference Appetecchi GB, Carewska M, Alessandrini F et al (2000) Characterization of PEO-based composite cathodes morphological thermal, mechanical, and electrical properties. J Electrochem Soc 147(2):451–459CrossRef Appetecchi GB, Carewska M, Alessandrini F et al (2000) Characterization of PEO-based composite cathodes morphological thermal, mechanical, and electrical properties. J Electrochem Soc 147(2):451–459CrossRef
105.
go back to reference Tang CY, Hackenberg K, Fu Q et al (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156CrossRef Tang CY, Hackenberg K, Fu Q et al (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156CrossRef
106.
go back to reference Karmakar A, Ghosh A (2011) Poly ethylene oxide (PEO)-LiI polymer electrolytes embedded with CdO nanoparticles. J Nanopart Res 13(7):2989–2996CrossRef Karmakar A, Ghosh A (2011) Poly ethylene oxide (PEO)-LiI polymer electrolytes embedded with CdO nanoparticles. J Nanopart Res 13(7):2989–2996CrossRef
107.
go back to reference Fan LZ, Dang ZM, Wei GD et al (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16-LiClO4 electrolytes. Mater Sci Eng, B 99(1–3):340–343CrossRef Fan LZ, Dang ZM, Wei GD et al (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16-LiClO4 electrolytes. Mater Sci Eng, B 99(1–3):340–343CrossRef
108.
go back to reference Zhang HJ, Kulkarni S, Wunder SL (2007) Blends of POSS-PEO(n = 4)8 and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries. J Phys Chem B 111(14):3583–3590CrossRef Zhang HJ, Kulkarni S, Wunder SL (2007) Blends of POSS-PEO(n = 4)8 and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries. J Phys Chem B 111(14):3583–3590CrossRef
109.
go back to reference Zhang HJ, Kulkarni S, Wunder SL (2006) Polyethylene glycol functionalized polyoctahedral silsesquioxanes as electrolytes for lithium batteries. J Electrochem Soc 153(2):A239–A248CrossRef Zhang HJ, Kulkarni S, Wunder SL (2006) Polyethylene glycol functionalized polyoctahedral silsesquioxanes as electrolytes for lithium batteries. J Electrochem Soc 153(2):A239–A248CrossRef
110.
go back to reference Fan J, Raghavan SR, Yu XY et al (1998) Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology. Solid State Ionics 111(1–2):117–123CrossRef Fan J, Raghavan SR, Yu XY et al (1998) Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology. Solid State Ionics 111(1–2):117–123CrossRef
111.
go back to reference Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173CrossRef Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173CrossRef
112.
go back to reference Jung G-Y, Choi JH, Lee JK (2015) Thermal behavior and ion conductivity of polyethylene oxide/polyhedral oligomeric silsesquioxane nanocomposite electrolytes. Adv Polym Technol 34(3):21–49CrossRef Jung G-Y, Choi JH, Lee JK (2015) Thermal behavior and ion conductivity of polyethylene oxide/polyhedral oligomeric silsesquioxane nanocomposite electrolytes. Adv Polym Technol 34(3):21–49CrossRef
113.
go back to reference Kim D-G, Shim J, Lee JH et al (2013) Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications. Polymer 54(21):5812–5820CrossRef Kim D-G, Shim J, Lee JH et al (2013) Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications. Polymer 54(21):5812–5820CrossRef
114.
go back to reference Polu AR, Rhee H-W (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef Polu AR, Rhee H-W (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef
115.
go back to reference Polu AR, Rhee H-W (2015) Effect of organic–inorganic hybrid nanoparticles (POSS–PEG(n = 4)) on thermal, mechanical, and electrical properties of PEO-based solid polymer electrolytes. Adv Polym Technol 00:21–58 Polu AR, Rhee H-W (2015) Effect of organic–inorganic hybrid nanoparticles (POSS–PEG(n = 4)) on thermal, mechanical, and electrical properties of PEO-based solid polymer electrolytes. Adv Polym Technol 00:21–58
116.
go back to reference Chinnam PR, Wunder SL (2013) Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li+ ion transference number. J Mater Chem A 1(5):1731–1739CrossRef Chinnam PR, Wunder SL (2013) Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li+ ion transference number. J Mater Chem A 1(5):1731–1739CrossRef
117.
go back to reference Chinnam PR, Wunder SL (2011) Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem Mater 23(23):5111–5121 Chinnam PR, Wunder SL (2011) Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem Mater 23(23):5111–5121
118.
go back to reference Chinnam PR, Zhang HJ, Wunder SL (2015) Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries. Electrochim Acta 170:191–201CrossRef Chinnam PR, Zhang HJ, Wunder SL (2015) Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries. Electrochim Acta 170:191–201CrossRef
119.
go back to reference Jia Z, Yuan W, Zhao H et al (2014) Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv 4(77):41087–41098CrossRef Jia Z, Yuan W, Zhao H et al (2014) Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv 4(77):41087–41098CrossRef
120.
go back to reference O’Reilly MV, Winey KI (2015) Silica nanoparticles densely grafted with PEO for ionomer plasticization. RSC Adv 5(25):19570–19580CrossRef O’Reilly MV, Winey KI (2015) Silica nanoparticles densely grafted with PEO for ionomer plasticization. RSC Adv 5(25):19570–19580CrossRef
121.
go back to reference Wetjen M, Navarra MA, Panero S et al (2013) Composite poly(ethylene oxide) electrolytes plasticized by N-Alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. ChemSusChem 6(6):1037–1043CrossRef Wetjen M, Navarra MA, Panero S et al (2013) Composite poly(ethylene oxide) electrolytes plasticized by N-Alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. ChemSusChem 6(6):1037–1043CrossRef
122.
go back to reference Park MJ, Choi I, Hong J et al (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 129(5):2363–2376CrossRef Park MJ, Choi I, Hong J et al (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 129(5):2363–2376CrossRef
123.
go back to reference Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO-EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178CrossRef Ketabi S, Lian K (2013) Effect of SiO2 on conductivity and structural properties of PEO-EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim Acta 103:174–178CrossRef
124.
go back to reference Chaurasia SK, Singh RK, Chandra S (2013) Ion-polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: a Raman study. Vib Spectrosc 68:190–195CrossRef Chaurasia SK, Singh RK, Chandra S (2013) Ion-polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: a Raman study. Vib Spectrosc 68:190–195CrossRef
125.
go back to reference Zhang SP, Lee KH, Sun JR et al (2011) Viscoelastic properties, ionic conductivity, and materials design considerations for poly(styrene-b-ethylene oxide-b-styrene)-based ion gel electrolytes. Macromol 44(22):8981–8989CrossRef Zhang SP, Lee KH, Sun JR et al (2011) Viscoelastic properties, ionic conductivity, and materials design considerations for poly(styrene-b-ethylene oxide-b-styrene)-based ion gel electrolytes. Macromol 44(22):8981–8989CrossRef
126.
go back to reference Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648CrossRef Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648CrossRef
127.
go back to reference Chen XJ, Li Q, Zhao J et al (2012) Ionic liquid-tethered nanoparticle/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Power Sources 207:216–221CrossRef Chen XJ, Li Q, Zhao J et al (2012) Ionic liquid-tethered nanoparticle/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Power Sources 207:216–221CrossRef
128.
go back to reference Moganty SS, Jayaprakash N, Nugent JL et al (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem Int Ed 49(48):9158–9161CrossRef Moganty SS, Jayaprakash N, Nugent JL et al (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem Int Ed 49(48):9158–9161CrossRef
129.
go back to reference Kim J, Park DW, Park SJ et al (2013) Ion conducting properties of poly(ethylene oxide)-based electrolytes incorporating amorphous silica attached with imidazolium salts. Res Chem Intermed 39(3):1409–1416CrossRef Kim J, Park DW, Park SJ et al (2013) Ion conducting properties of poly(ethylene oxide)-based electrolytes incorporating amorphous silica attached with imidazolium salts. Res Chem Intermed 39(3):1409–1416CrossRef
130.
go back to reference Lee L, Kim I-J, Yang S et al (2014) Filler effect of ionic liquid attached titanium oxide on conducting property of poly(ethylene oxide)/poly(methyl methacrylate) composite electrolytes. Am J Nanosci Nanotechnol 14(10):8010–8013CrossRef Lee L, Kim I-J, Yang S et al (2014) Filler effect of ionic liquid attached titanium oxide on conducting property of poly(ethylene oxide)/poly(methyl methacrylate) composite electrolytes. Am J Nanosci Nanotechnol 14(10):8010–8013CrossRef
131.
go back to reference Beck F, Ruetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45(15–16):2467–2482CrossRef Beck F, Ruetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45(15–16):2467–2482CrossRef
132.
go back to reference Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRef Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRef
133.
go back to reference Croce F, Gerace F, Dautzemberg G et al (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39(14):2187–2194CrossRef Croce F, Gerace F, Dautzemberg G et al (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39(14):2187–2194CrossRef
134.
go back to reference Song JY (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197CrossRef Song JY (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197CrossRef
135.
go back to reference Soni SS, Fadadu KB, Gibaud A (2012) Ionic conductivity through thermoresponsive polymer gel: ordering matters. Langmuir 28(1):751–756CrossRef Soni SS, Fadadu KB, Gibaud A (2012) Ionic conductivity through thermoresponsive polymer gel: ordering matters. Langmuir 28(1):751–756CrossRef
136.
go back to reference Johan MR, Shy OH, Ibrahim S et al (2011) Effects of Al2O3 nanofiller and ec plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196(1):41–47CrossRef Johan MR, Shy OH, Ibrahim S et al (2011) Effects of Al2O3 nanofiller and ec plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ionics 196(1):41–47CrossRef
137.
go back to reference Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6(10):4737–4748 Johan MR, Ting LM (2011) Structural, thermal and electrical properties of nano manganese-composite polymer electrolytes. Int J Electrochem Sci 6(10):4737–4748
138.
go back to reference Pitawala H, Dissanayake M, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTF. Solid State Ionics 178(13–14):885–888CrossRef Pitawala H, Dissanayake M, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTF. Solid State Ionics 178(13–14):885–888CrossRef
139.
go back to reference Leo CJ, Rao GVS, Chowdari BVR (2002) Studies on plasticized PEO-Lithium Triflate-Ceramic filler composite electrolyte system. Solid State Ionics 148(1–2):159–171CrossRef Leo CJ, Rao GVS, Chowdari BVR (2002) Studies on plasticized PEO-Lithium Triflate-Ceramic filler composite electrolyte system. Solid State Ionics 148(1–2):159–171CrossRef
140.
go back to reference Wang YJ, Pan Y, Wang L et al (2005) Conductivity studies of plasticized PEO-Lithium Chlorate-FIC filler composite polymer electrolytes. Mater Lett 59(24–25):3021–3026CrossRef Wang YJ, Pan Y, Wang L et al (2005) Conductivity studies of plasticized PEO-Lithium Chlorate-FIC filler composite polymer electrolytes. Mater Lett 59(24–25):3021–3026CrossRef
141.
go back to reference Xi JY, Qiu XP, Ma XM et al (2005) Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 176(13–14):1249–1260 Xi JY, Qiu XP, Ma XM et al (2005) Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 176(13–14):1249–1260
142.
go back to reference Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday T 89(17):3187–3203CrossRef Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday T 89(17):3187–3203CrossRef
143.
go back to reference Karan NK, Pradhan DK, Thomas R et al (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO-LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179(19–20):689–696CrossRef Karan NK, Pradhan DK, Thomas R et al (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO-LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179(19–20):689–696CrossRef
144.
go back to reference Mejia A, Garcia N, Guzman J et al (2014) Thermoplastic and solid-like electrolytes with liquid-like ionic conductivity based on poly(ethylene oxide) nanocomposites. Solid State Ionics 261:74–80CrossRef Mejia A, Garcia N, Guzman J et al (2014) Thermoplastic and solid-like electrolytes with liquid-like ionic conductivity based on poly(ethylene oxide) nanocomposites. Solid State Ionics 261:74–80CrossRef
145.
go back to reference Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5(12):1016–1020CrossRef Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5(12):1016–1020CrossRef
146.
go back to reference Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium Metal-Polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983CrossRef Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium Metal-Polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983CrossRef
147.
go back to reference Choi J, Cheruvally G, Kim Y et al (2007) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178(19–20):1235–1241CrossRef Choi J, Cheruvally G, Kim Y et al (2007) Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178(19–20):1235–1241CrossRef
148.
go back to reference Zhang RS, Chen YF, Montazami R (2015) Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Mater 8(5):2735–2748CrossRef Zhang RS, Chen YF, Montazami R (2015) Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Mater 8(5):2735–2748CrossRef
149.
go back to reference Zain NF, Zainal N, Mohamed NS (2015) The influences of ionic liquid to the properties of poly(ethylmethacrylate) based electrolyte. Phys Scripta 90(1):015702CrossRef Zain NF, Zainal N, Mohamed NS (2015) The influences of ionic liquid to the properties of poly(ethylmethacrylate) based electrolyte. Phys Scripta 90(1):015702CrossRef
150.
go back to reference Shalu, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318CrossRef Shalu, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318CrossRef
151.
go back to reference Shalu, Chaurasia SK, Singh RK et al (2015) Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-buty l-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate. J Appl Polym Sci 132(7):41456CrossRef Shalu, Chaurasia SK, Singh RK et al (2015) Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-buty l-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate. J Appl Polym Sci 132(7):41456CrossRef
152.
go back to reference Liu S, Imanishi N, Zhang T et al (2010) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 195(19):6847–6853 Liu S, Imanishi N, Zhang T et al (2010) Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 195(19):6847–6853
153.
go back to reference Liu S, Imanishi N, Zhang T et al (2010) Lithium dendrite formation in Li/poly(ethylene oxide)-Lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li Cells. J Electrochem Soc 157(10):1092–1098CrossRef Liu S, Imanishi N, Zhang T et al (2010) Lithium dendrite formation in Li/poly(ethylene oxide)-Lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li Cells. J Electrochem Soc 157(10):1092–1098CrossRef
154.
go back to reference Liu S, Wang H, Imanishi N et al (2011) Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 196(18):7681–7686CrossRef Liu S, Wang H, Imanishi N et al (2011) Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/Poly(ethylene oxide)-Li(CF3SO2)2N/Li. J Power Sources 196(18):7681–7686CrossRef
155.
go back to reference Aihara Y, Appetecchi GB, Scrosati B et al (2002) Investigation of the ionic conduction mechanism of composite poly(ethyleneoxide) PEO-based polymer gel electrolytes including nano-size SiO2. Phys Chem Chem Phys 4(14):3443–3447CrossRef Aihara Y, Appetecchi GB, Scrosati B et al (2002) Investigation of the ionic conduction mechanism of composite poly(ethyleneoxide) PEO-based polymer gel electrolytes including nano-size SiO2. Phys Chem Chem Phys 4(14):3443–3447CrossRef
156.
go back to reference Qi DJ, Ru HQ, Bi XG et al (2012) A novel PEO-based composite polymer electrolyte with NaAlOSiO molecular sieves powders. Ionics 18(3):267–273CrossRef Qi DJ, Ru HQ, Bi XG et al (2012) A novel PEO-based composite polymer electrolyte with NaAlOSiO molecular sieves powders. Ionics 18(3):267–273CrossRef
157.
go back to reference Angulakshmi N, Kumar RS, Kulandainathan MA et al (2014) Composite polymer electrolytes encompassing metal organic frame works: a new strategy for all-solid-state lithium batteries. J Phys Chem C 118(42):24240–24247CrossRef Angulakshmi N, Kumar RS, Kulandainathan MA et al (2014) Composite polymer electrolytes encompassing metal organic frame works: a new strategy for all-solid-state lithium batteries. J Phys Chem C 118(42):24240–24247CrossRef
158.
go back to reference Kumar RS, Raja M, Kulandainathan MA et al (2014) Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv 4(50):26171–26175CrossRef Kumar RS, Raja M, Kulandainathan MA et al (2014) Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv 4(50):26171–26175CrossRef
159.
go back to reference Gadjourova Z, Andreev YG, Tunstall DP et al (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846):520–523CrossRef Gadjourova Z, Andreev YG, Tunstall DP et al (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846):520–523CrossRef
160.
go back to reference Wang Y, Li B, Ji J et al (2014) Controlled Li+ conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. J Power Sources 247:452–459CrossRef Wang Y, Li B, Ji J et al (2014) Controlled Li+ conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. J Power Sources 247:452–459CrossRef
161.
go back to reference Li H, Zhang H, Liang ZY et al (2014) Preparation and properties of poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes. Electrochim Acta 116:413–420CrossRef Li H, Zhang H, Liang ZY et al (2014) Preparation and properties of poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes. Electrochim Acta 116:413–420CrossRef
162.
go back to reference Jankowsky S, Hiller MM, Wiemhoefer HD (2014) Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J Power Sources 253:256–262CrossRef Jankowsky S, Hiller MM, Wiemhoefer HD (2014) Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J Power Sources 253:256–262CrossRef
163.
go back to reference Kwon S-J, Kim D-G, Shim J et al (2014) Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 55(12):2799–2808CrossRef Kwon S-J, Kim D-G, Shim J et al (2014) Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 55(12):2799–2808CrossRef
164.
go back to reference Kuo P-L, Wu C-A, Lu C-Y et al (2014) High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl Mater Interface 6(5):3156–3162CrossRef Kuo P-L, Wu C-A, Lu C-Y et al (2014) High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS Appl Mater Interface 6(5):3156–3162CrossRef
165.
go back to reference Huang J, Wang RY, Tong ZZ et al (2014) Influence of ionic species on the microphase separation behavior of PCL-b-PEO/Salt hybrids. Macromol 47(23):8359–8367 Huang J, Wang RY, Tong ZZ et al (2014) Influence of ionic species on the microphase separation behavior of PCL-b-PEO/Salt hybrids. Macromol 47(23):8359–8367
166.
go back to reference Bodratti AM, Sarkar B, Alexandridis P (2017) Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid–liquid interfaces: fundamentals and applications. Adv Colloid Interfac. doi:10.1016/j.cis.2016.09.003 Bodratti AM, Sarkar B, Alexandridis P (2017) Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid–liquid interfaces: fundamentals and applications. Adv Colloid Interfac. doi:10.​1016/​j.​cis.​2016.​09.​003
Metadata
Title
Tailoring Performance of Polymer Electrolytes Through Formulation Design
Authors
Wei Wang
Dmitry Bedrov
Paschalis Alexandridis
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_11

Premium Partners