Skip to main content
Top
Published in: Journal of Materials Science 9/2017

20-01-2017 | Original Paper

Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups

Authors: Afshan Mohajeri, Azin Shahsavar

Published in: Journal of Materials Science | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modification of nanostructures is essential in designing materials for application in electronics and optoelectronics. In this article, the electronic structure tuning and optical properties engineering of modified graphyne (GY) and graphdiyne (GDY) are investigated by first principles density functional theory (DFT) calculations. The model GY/GDY nanoflakes are subjected to i) edge functionalization by carbonyl and carboxyl groups and ii) doping with N atom and codoping with N,S atoms. The change in the electronic and optical properties of GY/GDY due to systematic functionalization and doping is reported. It is observed that the concentration of impurity is important to tune the energy gap. The energy gap for GY/GDY flakes can be tuned over a range ~1.20 eV by varying the concentration of CO functional group. In contrast, the energy gap is insensitive to the number of COOH groups. Alternatively, the energy gap can be controlled from 0.11 to 0.68 eV by varying the N/S doping level. Upon codoping, S atom plays a role of hole doping and N acts as an electron doping. The optical response of considered systems was also monitored from the infrared to the UV region. Red shift of absorption peaks has been observed for the doped and functionalized GY/GDY flakes as compared to the original pristine systems. Increasing the dopant content results in intensive peaks which are highly shifted to the lower energies. This tunable optical response indicates that modified GY/GDY nanoflakes are prominent candidates for application in UV-light protection devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
3.
4.
go back to reference Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649CrossRef Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649CrossRef
5.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
6.
go back to reference Baughman R, Eckhardt H, Kertesz J (1987) Structure property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699CrossRef Baughman R, Eckhardt H, Kertesz J (1987) Structure property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699CrossRef
7.
go back to reference Haley M, Brand C, Pak J (1997) Graphene and applications. Chem Int 36:836–838 Haley M, Brand C, Pak J (1997) Graphene and applications. Chem Int 36:836–838
8.
go back to reference Peng Q, Dearden AK, Crean J, Han L, Liu Sh, Wen X, De S (2017) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29 Peng Q, Dearden AK, Crean J, Han L, Liu Sh, Wen X, De S (2017) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29
9.
go back to reference Junjie H, Shuang Ying M, Zhou P, Zhang CX, Chaoyu H, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+ U calculations. J Phys Chem C 116:26313–26321CrossRef Junjie H, Shuang Ying M, Zhou P, Zhang CX, Chaoyu H, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+ U calculations. J Phys Chem C 116:26313–26321CrossRef
10.
go back to reference Diederich F (1994) Carbon scaffolding: building acetylenic all-carbon and carbon-rich compound. Nature 369:199–207CrossRef Diederich F (1994) Carbon scaffolding: building acetylenic all-carbon and carbon-rich compound. Nature 369:199–207CrossRef
12.
go back to reference Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258CrossRef Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258CrossRef
14.
go back to reference Yan Z, Wang L, Cheng J, Huang L, Zhu C, Chen C, Miao L, Jiang J (2014) Lithium-decorated oxidized graphyne for hydrogen storage by first principles study. J Appl Phys 116:174304. doi:10.1063/1.4900435 CrossRef Yan Z, Wang L, Cheng J, Huang L, Zhu C, Chen C, Miao L, Jiang J (2014) Lithium-decorated oxidized graphyne for hydrogen storage by first principles study. J Appl Phys 116:174304. doi:10.​1063/​1.​4900435 CrossRef
15.
go back to reference Hwang HJ, Kwon Y, Lee H (2012) Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium. J Phys Chem C 116:20220–20224CrossRef Hwang HJ, Kwon Y, Lee H (2012) Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium. J Phys Chem C 116:20220–20224CrossRef
16.
go back to reference Sun Ch, Searles DJ (2012) Lithium storage on graphdiyne predicted by DFT calculations. J Phys Chem C 116:26222–26226CrossRef Sun Ch, Searles DJ (2012) Lithium storage on graphdiyne predicted by DFT calculations. J Phys Chem C 116:26222–26226CrossRef
17.
19.
go back to reference Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117:6919–6923CrossRef Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117:6919–6923CrossRef
20.
go back to reference Kan EJ, Li ZY, Yang JL, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224–4225CrossRef Kan EJ, Li ZY, Yang JL, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224–4225CrossRef
22.
go back to reference Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z (2012) Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification. J Phys Chem B 116:3934–3939CrossRef Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z (2012) Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification. J Phys Chem B 116:3934–3939CrossRef
24.
25.
go back to reference Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829CrossRef Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829CrossRef
26.
go back to reference Koo J, Huang B, Lee H, Kim G, Nam J, Kwon Y, Lee H (2014) Tailoring the electronic band gap of graphyne. J Phys Chem C 118:2463–2468CrossRef Koo J, Huang B, Lee H, Kim G, Nam J, Kwon Y, Lee H (2014) Tailoring the electronic band gap of graphyne. J Phys Chem C 118:2463–2468CrossRef
28.
go back to reference Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne Sheet and nanoribbons: theoretical predictions. ACS Nano 5:2593–2600CrossRef Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne Sheet and nanoribbons: theoretical predictions. ACS Nano 5:2593–2600CrossRef
29.
go back to reference Wu W, Guo W, Zeng XC (2013) Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. RSC Nanoscale 5:9264–9276CrossRef Wu W, Guo W, Zeng XC (2013) Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. RSC Nanoscale 5:9264–9276CrossRef
30.
go back to reference Kehoe JM, Kiley JH, English JJ, Johnson CA, Petersen RC, Haley M (2000) Carbon networks based on dehydrobenzoannulenes. 3. synthesis of graphyne substructures. Org Lett 2:969–972CrossRef Kehoe JM, Kiley JH, English JJ, Johnson CA, Petersen RC, Haley M (2000) Carbon networks based on dehydrobenzoannulenes. 3. synthesis of graphyne substructures. Org Lett 2:969–972CrossRef
31.
go back to reference Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl Chem 80:519–532CrossRef Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl Chem 80:519–532CrossRef
32.
go back to reference Johnson CA, Lu Y, Haley MM (2007) Carbon networks based on benzocyclynes. 6. synthesis of graphyne substructures via directed alkyne metathesis. Org Lett 9:3725–3728CrossRef Johnson CA, Lu Y, Haley MM (2007) Carbon networks based on benzocyclynes. 6. synthesis of graphyne substructures via directed alkyne metathesis. Org Lett 9:3725–3728CrossRef
33.
go back to reference Yoshimura T, Inaba A, Sonoda M, Tahara K, Tobe Y, Williams RV (2006) Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo[12] annulene) and tris(tetradehydrotribenzo[12]annulene). Org Lett 8:2933–2936CrossRef Yoshimura T, Inaba A, Sonoda M, Tahara K, Tobe Y, Williams RV (2006) Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo[12] annulene) and tris(tetradehydrotribenzo[12]annulene). Org Lett 8:2933–2936CrossRef
34.
go back to reference Liu HB, Xu JL, Li YJ, Li YL (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508CrossRef Liu HB, Xu JL, Li YJ, Li YL (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508CrossRef
35.
go back to reference Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760. doi:10.1038/ncomms8760 CrossRef Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760. doi:10.​1038/​ncomms8760 CrossRef
36.
go back to reference Ai W, Luo Zh, Jiang J, Zhu J, Du Zh, Fan Zh, Xie L, Zhang H, Huang W, Yu T (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv Mater 26:6186–6192CrossRef Ai W, Luo Zh, Jiang J, Zhu J, Du Zh, Fan Zh, Xie L, Zhang H, Huang W, Yu T (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv Mater 26:6186–6192CrossRef
37.
go back to reference Zhang J, Yang Z, Qiu J, Lee HW (2016) Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries. J Mater Chem A 4:5802–5809CrossRef Zhang J, Yang Z, Qiu J, Lee HW (2016) Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries. J Mater Chem A 4:5802–5809CrossRef
38.
go back to reference Huang H, Zhu J, Zhang W, Sekhar Tiwary C, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater 28:1737–1744CrossRef Huang H, Zhu J, Zhang W, Sekhar Tiwary C, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater 28:1737–1744CrossRef
39.
go back to reference Mohajeri A, Shahsavar A (2016) Li-decoration on the edge oxidized graphyne and graphdiyne: a first principles study. Comput Mater Sci 115:51–59CrossRef Mohajeri A, Shahsavar A (2016) Li-decoration on the edge oxidized graphyne and graphdiyne: a first principles study. Comput Mater Sci 115:51–59CrossRef
40.
go back to reference Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.02. Gaussian, Inc, Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.02. Gaussian, Inc, Wallingford
41.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
42.
43.
go back to reference Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liub H, Li B (2016) Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J Mater Chem A 4:4738–4744CrossRef Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liub H, Li B (2016) Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J Mater Chem A 4:4738–4744CrossRef
Metadata
Title
Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups
Authors
Afshan Mohajeri
Azin Shahsavar
Publication date
20-01-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0779-1

Other articles of this Issue 9/2017

Journal of Materials Science 9/2017 Go to the issue

Premium Partners