Skip to main content
Top
Published in: Flow, Turbulence and Combustion 1/2019

02-05-2018

Targeted Drug Delivery to Upper Airways Using a Pulsed Aerosol Bolus and Inhaled Volume Tracking Method

Authors: Yan Ostrovski, Simon Dorfman, Maksim Mezhericher, Stavros Kassinos, Josué Sznitman

Published in: Flow, Turbulence and Combustion | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pulmonary route presents an attractive delivery pathway for topical treatment of lung diseases. While significant progress has been achieved in understanding the physical underpinnings of aerosol deposition in the lungs, our ability to target or confine the deposition of inhalation aerosols to specific lung regions remains meagre. Here, we present a novel inhalation proof-of-concept in silico for regional targeting in the upper airways, quantitatively supported by computational fluid dynamics (CFD) simulations of inhaled micron-sized particles (i.e. 1-10 μm) using an intubated, anatomically-realistic, multi-generation airway tree model. Our targeting strategy relies on selecting the particle release time, whereby a short-pulsed bolus of aerosols is injected into the airways and the inhaled volume of clean air behind the bolus is tracked to reach a desired inhalation depth (i.e. airway generations). A breath hold maneuver then follows to facilitate deposition, via sedimentation, before exhalation resumes and remaining airborne particles are expelled. Our numerical findings showcase how particles in the range 5-10 μm combined with such inhalation methodology are best suited to deposit in the upper airways, with deposition fractions between 0.68 and unity. In contrast, smaller (< 2 μm) particles are less than optimal due to their slow sedimentation rates. We illustrate further how modulating the volume inhaled behind the pulsed bolus, prior to breath hold, may be leveraged to vary the targeted airway sites. We discuss the feasibility of the proposed inhalation framework and how it may help pave the way for specialized topical lung treatments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Velkov, T., Abdul Rahim, N., Zhou, Q.T., Chan, H.-K., Li, J.: Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv. Drug Deliv. Rev. 85, 65–82 (2015)CrossRef Velkov, T., Abdul Rahim, N., Zhou, Q.T., Chan, H.-K., Li, J.: Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv. Drug Deliv. Rev. 85, 65–82 (2015)CrossRef
2.
go back to reference Burrowes, K.S., Doel, T., Brightling, C.: Computational modeling of the obstructive lung diseases asthma and COPD. J. Transl. Med. 12(2:S5), 1–8 (2014) Burrowes, K.S., Doel, T., Brightling, C.: Computational modeling of the obstructive lung diseases asthma and COPD. J. Transl. Med. 12(2:S5), 1–8 (2014)
3.
go back to reference Tsuda, A., Henry, F.S., Butler, J.P.: Particle transport and deposition: Basic physics of particle kinetics. Compr. Physiol. 3, 1437–1471 (2013)CrossRef Tsuda, A., Henry, F.S., Butler, J.P.: Particle transport and deposition: Basic physics of particle kinetics. Compr. Physiol. 3, 1437–1471 (2013)CrossRef
4.
go back to reference Longest, P.W., Holbrook, L.T.: In silico models of aerosol delivery to the respiratory tract — Development and applications. Adv. Drug Deliv. Rev. 64(4), 296–311 (2012)CrossRef Longest, P.W., Holbrook, L.T.: In silico models of aerosol delivery to the respiratory tract — Development and applications. Adv. Drug Deliv. Rev. 64(4), 296–311 (2012)CrossRef
5.
go back to reference Kleinstreuer, C., Zhang, Z., Donohue, J.F.: Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10, 195–220 (2008)CrossRef Kleinstreuer, C., Zhang, Z., Donohue, J.F.: Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10, 195–220 (2008)CrossRef
6.
go back to reference Tu, J., Inthavong, K., Ahmadi, G.: Computational fluid and particle dynamics in the human respiratory system, 1st edn. Springer, Dordrecht (2013) Tu, J., Inthavong, K., Ahmadi, G.: Computational fluid and particle dynamics in the human respiratory system, 1st edn. Springer, Dordrecht (2013)
7.
go back to reference Weibel, E.R.: Morphometry of the human lung, 1st edn. Springer, Berlin (1963) Weibel, E.R.: Morphometry of the human lung, 1st edn. Springer, Berlin (1963)
8.
go back to reference Wenzel, R.P., Fowler, A.A.: Acute Bronchitis. N. Engl. J. Med. 355(20), 2125–2130 (2006)CrossRef Wenzel, R.P., Fowler, A.A.: Acute Bronchitis. N. Engl. J. Med. 355(20), 2125–2130 (2006)CrossRef
9.
go back to reference Koch, C., Hiby, N.: Pathogenesis of cystic fibrosis. Lancet 341(8852), 1065–1069 (1993)CrossRef Koch, C., Hiby, N.: Pathogenesis of cystic fibrosis. Lancet 341(8852), 1065–1069 (1993)CrossRef
10.
go back to reference Sznitman, J.: Respiratory microflows in the pulmonary acinus. J. Biomech. 46 (2), 284–298 (2013)CrossRef Sznitman, J.: Respiratory microflows in the pulmonary acinus. J. Biomech. 46 (2), 284–298 (2013)CrossRef
11.
go back to reference De Boer, A.H., Gjaltema, D., Hagedoorn, P., Frijlink, H.W.: Can ‘extrafine’ dry powder aerosols improve lung deposition? Eur. J. Pharm. Biopharm. 96, 143–151 (2015)CrossRef De Boer, A.H., Gjaltema, D., Hagedoorn, P., Frijlink, H.W.: Can ‘extrafine’ dry powder aerosols improve lung deposition? Eur. J. Pharm. Biopharm. 96, 143–151 (2015)CrossRef
12.
go back to reference ICRP Protection International Commission on Radiological: ICRP publication 66: human respiratory tract model for radiological protection. Ann. ICRP 124(1–3), 1–482 (1994) ICRP Protection International Commission on Radiological: ICRP publication 66: human respiratory tract model for radiological protection. Ann. ICRP 124(1–3), 1–482 (1994)
13.
go back to reference Patton, J.S., Byron, P.R.: Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007)CrossRef Patton, J.S., Byron, P.R.: Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007)CrossRef
14.
go back to reference Finlay, W.H.: Motion of a single aerosol particle in a fluid. In: The Mechanics of Inhaled Pharmaceutical Aerosols, 1st edn. Academic Press, London (2001) Finlay, W.H.: Motion of a single aerosol particle in a fluid. In: The Mechanics of Inhaled Pharmaceutical Aerosols, 1st edn. Academic Press, London (2001)
15.
go back to reference Koullapis, P.G., Kassinos, S.C., Bivolarova, M.P., Melikov, A.K.: Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech. 49(11), 2201–2212 (2016)CrossRef Koullapis, P.G., Kassinos, S.C., Bivolarova, M.P., Melikov, A.K.: Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech. 49(11), 2201–2212 (2016)CrossRef
16.
go back to reference Virchow, J.C., et al.: Importance of inhaler devices in the management of airway disease. Respir. Med. 102(1), 10–19 (2008)CrossRef Virchow, J.C., et al.: Importance of inhaler devices in the management of airway disease. Respir. Med. 102(1), 10–19 (2008)CrossRef
17.
go back to reference Edwards, D.A.: Large Porous Particles for Pulmonary Drug Delivery, Science (80-. ). 276(5320), 1868–1872 (1997) Edwards, D.A.: Large Porous Particles for Pulmonary Drug Delivery, Science (80-. ). 276(5320), 1868–1872 (1997)
18.
go back to reference Edwards, D.A., Ben-Jebria, A., Langer, R.: Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85(2), 379–85 (1998)CrossRef Edwards, D.A., Ben-Jebria, A., Langer, R.: Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85(2), 379–85 (1998)CrossRef
19.
go back to reference Zhang, Z., Kim, C.S., Kleinstreuer, C.: Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40(1), 1–16 (2006)CrossRef Zhang, Z., Kim, C.S., Kleinstreuer, C.: Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40(1), 1–16 (2006)CrossRef
20.
go back to reference Broday, D.M., Georgopoulos, P.G.: Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34(2015), 144–159 (2001)CrossRef Broday, D.M., Georgopoulos, P.G.: Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34(2015), 144–159 (2001)CrossRef
21.
go back to reference Dames, P., et al.: Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2(8), 495–9 (2007)CrossRef Dames, P., et al.: Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2(8), 495–9 (2007)CrossRef
22.
go back to reference Pourmehran, O., Rahimi-Gorji, M., Gorji-Bandpy, M., Gorji, T.B.: Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J. Magn. Magn. Mater. 393, 380–393 (2015)CrossRef Pourmehran, O., Rahimi-Gorji, M., Gorji-Bandpy, M., Gorji, T.B.: Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J. Magn. Magn. Mater. 393, 380–393 (2015)CrossRef
23.
go back to reference Xie, Y., Zeng, P., Siegel, R.A., Wiedmann, T.S., Hammer, B.E., Longest, P.W.: Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm. Res. 27(5), 855–865 (2010)CrossRef Xie, Y., Zeng, P., Siegel, R.A., Wiedmann, T.S., Hammer, B.E., Longest, P.W.: Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm. Res. 27(5), 855–865 (2010)CrossRef
24.
go back to reference Brenner, B., Corbridge, T., Kazzi, A.: Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. J. Emerg. Med. 37(2 Suppl), S23–34 (2009)CrossRef Brenner, B., Corbridge, T., Kazzi, A.: Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. J. Emerg. Med. 37(2 Suppl), S23–34 (2009)CrossRef
25.
go back to reference Shetty, A.N., Bis, K.G., Kirsch, M., Weintraub, J., Laub, G.: Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J. Magn. Reson. Imaging 12(6), 912–23 (2000)CrossRef Shetty, A.N., Bis, K.G., Kirsch, M., Weintraub, J., Laub, G.: Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J. Magn. Reson. Imaging 12(6), 912–23 (2000)CrossRef
26.
go back to reference Horsfield, K., Dart, G., Olson, D.: Models of the human bronchial tree. J. Appl. Physiol. 31(2), 207–217 (1971)CrossRef Horsfield, K., Dart, G., Olson, D.: Models of the human bronchial tree. J. Appl. Physiol. 31(2), 207–217 (1971)CrossRef
27.
go back to reference Horsfield, K., Cumming, G.: Morphology of the bronchial tree in man. J. Appl. Physiol. 24(3), 373–383 (1968)CrossRef Horsfield, K., Cumming, G.: Morphology of the bronchial tree in man. J. Appl. Physiol. 24(3), 373–383 (1968)CrossRef
28.
go back to reference Bauer, K., Chaves, H., Brücker, C.: Visualizing flow partitioning in a model of the upper human lung airways. J. Biomech. Eng. 132(3), 31005 (2010)CrossRef Bauer, K., Chaves, H., Brücker, C.: Visualizing flow partitioning in a model of the upper human lung airways. J. Biomech. Eng. 132(3), 31005 (2010)CrossRef
29.
go back to reference Reddy, R.M., Guntupalli, K.K.: Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int. J. COPD 2(4), 441–452 (2007) Reddy, R.M., Guntupalli, K.K.: Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int. J. COPD 2(4), 441–452 (2007)
30.
go back to reference Farrow, S., Farrow, C., Soni, N.: Size matters: Choosing the right tracheal tube. Anaesthesia 67(8), 815–819 (2012)CrossRef Farrow, S., Farrow, C., Soni, N.: Size matters: Choosing the right tracheal tube. Anaesthesia 67(8), 815–819 (2012)CrossRef
31.
go back to reference Zhang, Z., Kleinstreuer, C.: Low-reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA J. 41(5), 831–840 (2003)CrossRef Zhang, Z., Kleinstreuer, C.: Low-reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA J. 41(5), 831–840 (2003)CrossRef
32.
go back to reference Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J. Biomech. 16(12), 955–963 (1983)CrossRef Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J. Biomech. 16(12), 955–963 (1983)CrossRef
33.
go back to reference Kobashi, S., Kuramoto, K., Hat, Y.: Functional assessment of individual lung lobes with MDCT images, in Theory and Applications of CT Imaging and Analysis. InTech (2011) Kobashi, S., Kuramoto, K., Hat, Y.: Functional assessment of individual lung lobes with MDCT images, in Theory and Applications of CT Imaging and Analysis. InTech (2011)
34.
go back to reference Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31(4), 374–390 (2003)CrossRef Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31(4), 374–390 (2003)CrossRef
35.
go back to reference Feng, Y., Kleinstreuer, C.: Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J. Aerosol Sci. 71, 1–15 (2014)CrossRef Feng, Y., Kleinstreuer, C.: Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J. Aerosol Sci. 71, 1–15 (2014)CrossRef
36.
go back to reference Ostrovski, Y., Hofemeier, P., Sznitman, J.: Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int. J. Nanomedicine 11, 3385–3395 (2016)CrossRef Ostrovski, Y., Hofemeier, P., Sznitman, J.: Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int. J. Nanomedicine 11, 3385–3395 (2016)CrossRef
37.
go back to reference Oakes, J.M., Breen, E.C., Scadeng, M., Tchantchou, G.S., Darquenne, C.: MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. J. Appl. Physiol. 116(12), 1561–1568 (2014)CrossRef Oakes, J.M., Breen, E.C., Scadeng, M., Tchantchou, G.S., Darquenne, C.: MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. J. Appl. Physiol. 116(12), 1561–1568 (2014)CrossRef
38.
go back to reference Sanchis, J., Corrigan, C., Levy, M.L., Viejo, J.L.: Inhaler devices-From theory to practice. Respir. Med. 107(4), 495–502 (2013)CrossRef Sanchis, J., Corrigan, C., Levy, M.L., Viejo, J.L.: Inhaler devices-From theory to practice. Respir. Med. 107(4), 495–502 (2013)CrossRef
39.
go back to reference Lizal, F., et al.: Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur. J. Pharm. Sci. (2017) Lizal, F., et al.: Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur. J. Pharm. Sci. (2017)
40.
go back to reference Koullapis, P., et al.: Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. Eur. J. Pharm. Sci. (2017) Koullapis, P., et al.: Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. Eur. J. Pharm. Sci. (2017)
41.
go back to reference Zarogoulidis, P., et al.: Inhaled chemotherapy in lung cancer: Future concept of nanomedicine. Int. J. Nanomedicine 7, 1551–1572 (2012)CrossRef Zarogoulidis, P., et al.: Inhaled chemotherapy in lung cancer: Future concept of nanomedicine. Int. J. Nanomedicine 7, 1551–1572 (2012)CrossRef
42.
go back to reference Sul, B., Wallqvist, A., Morris, M.J., Reifman, J., Rakesh, V.: A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Comput. Biol. Med. 52, 130–143 (2014)CrossRef Sul, B., Wallqvist, A., Morris, M.J., Reifman, J., Rakesh, V.: A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Comput. Biol. Med. 52, 130–143 (2014)CrossRef
43.
go back to reference DeHaan, W.H., Finlay, W.H.: Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci. 35(3), 309–331 (2004)CrossRef DeHaan, W.H., Finlay, W.H.: Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci. 35(3), 309–331 (2004)CrossRef
44.
go back to reference Lavorini, F.: The challenge of delivering therapeutic aerosols to asthma patients. ISRN Allergy 2013(1), 102418 (2013) Lavorini, F.: The challenge of delivering therapeutic aerosols to asthma patients. ISRN Allergy 2013(1), 102418 (2013)
45.
go back to reference Sakagami, M., Byron, P.R.: Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin. Pharmacokinet. 44(3), 263–77 (2005)CrossRef Sakagami, M., Byron, P.R.: Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin. Pharmacokinet. 44(3), 263–77 (2005)CrossRef
Metadata
Title
Targeted Drug Delivery to Upper Airways Using a Pulsed Aerosol Bolus and Inhaled Volume Tracking Method
Authors
Yan Ostrovski
Simon Dorfman
Maksim Mezhericher
Stavros Kassinos
Josué Sznitman
Publication date
02-05-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 1/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9927-1

Other articles of this Issue 1/2019

Flow, Turbulence and Combustion 1/2019 Go to the issue

Premium Partners