Skip to main content
Top

11-05-2021

Task allocation for unmanned aerial vehicles in mobile crowdsensing

Published in: Wireless Networks

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mobile crowdsensing is a new paradigm for intelligent mobile devices to collect and share various types of sensing data in the urban environment. The recent rapid development of unmanned aerial vehicle (UAV) technology facilitates the realization of crowdsensing because UAVs have high-efficiency mobility in the urban environment and have been used in various areas of aerial photography, agriculture, plant protection, express transportation, disaster relief, and so on. However, for UAVs, one of the key issues for the archival of efficient crowdsensing is task allocation, which must balance the task quality and cost. This paper first proposes a mathematical model for task allocation for UAVs in crowdsensing. Then, for the effectiveness of data sensing, three algorithms are proposed to allocate tasks for the purpose of minimizing the incentive cost while ensuring the quality of sensing data. The proposed algorithms include the minimum cost first (MCF) algorithm, which assigns a high priority to UAVs with the lowest cost, the maximum ratio first (MRF) algorithm, which assigns a high priority to UAVs with a high ratio of sensing quality and sensing cost, and a genetic algorithm-based one (GA-TA), which comprehensively considers the factors such as UAV sensing quality, sensing cost, and execution ability. Experimental results show that, compared with MCF and MRF, GA-TA achieves the lowest total sensing cost, average task cost, and total moving distance of UAVs, and the highest average contribution of UAVs. Considering all factors, GA-TA is the best task allocation algorithm for UAVs in crowdsensing on average.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The source code of the algorithms and the referred paper that describes how to generate the simulated datasets are available at https://github.com/Sue-Xui/wireless-network.git.
 
Literature
1.
go back to reference Alabbadi, A.A., Abulkhair, M.F.(2021). Multi-objective task scheduling optimization in spatial crowdsourcing. Algorithms 14(3), 77(1–20). Alabbadi, A.A., Abulkhair, M.F.(2021). Multi-objective task scheduling optimization in spatial crowdsourcing. Algorithms 14(3), 77(1–20).
2.
go back to reference Bertuccelli, L., Han-Lim, C., Peter, C., How, J.(2009). Real-time multi-uav task assignment in dynamic and uncertain environments. In: AIAA Guidance, Navigation, and Control Conference, pp. 10–13. Bertuccelli, L., Han-Lim, C., Peter, C., How, J.(2009). Real-time multi-uav task assignment in dynamic and uncertain environments. In: AIAA Guidance, Navigation, and Control Conference, pp. 10–13.
3.
go back to reference Cardei, M., Thai, M.T., Li, Y., Wu, W.(2005). Energy-efficient target coverage in wireless sensor networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1976–1984. Cardei, M., Thai, M.T., Li, Y., Wu, W.(2005). Energy-efficient target coverage in wireless sensor networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1976–1984.
4.
go back to reference Cardone, G., Cirri, A., Corradi, A., Foschini, L., & Ianniello, R. (2014). Crowdsensing in urban areas for city-scale mass gathering management: Geofencing and activity recognition. IEEE Sensors Journal, 14, 4185–4195.CrossRef Cardone, G., Cirri, A., Corradi, A., Foschini, L., & Ianniello, R. (2014). Crowdsensing in urban areas for city-scale mass gathering management: Geofencing and activity recognition. IEEE Sensors Journal, 14, 4185–4195.CrossRef
5.
go back to reference Cheung, M.H., Hou, F., Huang, J.(2017). Make a difference: Diversity-driven social mobile crowdsensing. In: EEE INFOCOM 2017-IEEE Conference on Computer Communications. Cheung, M.H., Hou, F., Huang, J.(2017). Make a difference: Diversity-driven social mobile crowdsensing. In: EEE INFOCOM 2017-IEEE Conference on Computer Communications.
6.
go back to reference Dutta, J., Gazi, F., Roy, S., & Chowdhury, C. (2017). Airsense: Opportunistic crowd-sensing based air quality monitoring system for smart city. Sensors, 18, 38–48.CrossRef Dutta, J., Gazi, F., Roy, S., & Chowdhury, C. (2017). Airsense: Opportunistic crowd-sensing based air quality monitoring system for smart city. Sensors, 18, 38–48.CrossRef
7.
go back to reference Edison, E., & Shima, T. (2011). Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Computers and Operations Research, 38(1), 340–356.MathSciNetCrossRef Edison, E., & Shima, T. (2011). Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Computers and Operations Research, 38(1), 340–356.MathSciNetCrossRef
8.
go back to reference Estrada, R., Mizouni, R., Otrok, H., Ouali, A., & Bentahar, J. (2020). A crowd-sensing framework for allocation of time-constrained and location-based tasks. IEEE Transactions on Services Computing, 13(5), 769–785.CrossRef Estrada, R., Mizouni, R., Otrok, H., Ouali, A., & Bentahar, J. (2020). A crowd-sensing framework for allocation of time-constrained and location-based tasks. IEEE Transactions on Services Computing, 13(5), 769–785.CrossRef
9.
go back to reference Fernandes, B., Silva, F., Analide, C., & Neves, J. M. (2018). Crowd sensing for urban security in smart cities. Journal of Universal Computer Science, 24(3), 302–321. Fernandes, B., Silva, F., Analide, C., & Neves, J. M. (2018). Crowd sensing for urban security in smart cities. Journal of Universal Computer Science, 24(3), 302–321.
10.
go back to reference Han, K., Zhang, C., & Luo, J. (2016). Taming the uncertainty: Budget limited robust crowdsensing through online learning. IEEE/ACM Transactions on Networking, 24(3), 1462–1475.CrossRef Han, K., Zhang, C., & Luo, J. (2016). Taming the uncertainty: Budget limited robust crowdsensing through online learning. IEEE/ACM Transactions on Networking, 24(3), 1462–1475.CrossRef
11.
go back to reference He, J., & Pan, P. (2018). Research on cache strategy of scn cellular network supporting mec. Information Technology and Network Security, 37(11), 69–73. He, J., & Pan, P. (2018). Research on cache strategy of scn cellular network supporting mec. Information Technology and Network Security, 37(11), 69–73.
12.
go back to reference Heiskala, M., Jokinen, J. P., & Tinnilä, M. (2016). Crowdsensing-based transportation services-an analysis from business model and sustainability viewpoints. Research in Transportation Business and Management, 18, 38–48.CrossRef Heiskala, M., Jokinen, J. P., & Tinnilä, M. (2016). Crowdsensing-based transportation services-an analysis from business model and sustainability viewpoints. Research in Transportation Business and Management, 18, 38–48.CrossRef
13.
go back to reference Hu, X., Ma, H., Ye, Q., & Luo, H. (2015). Hierarchical method of task assignment for multiple cooperating uav teams. Journal of Systems Engineering and Electronics, 26(5), 1000–1009.CrossRef Hu, X., Ma, H., Ye, Q., & Luo, H. (2015). Hierarchical method of task assignment for multiple cooperating uav teams. Journal of Systems Engineering and Electronics, 26(5), 1000–1009.CrossRef
14.
go back to reference Jiangtao, W., Wang, F., Wang, Y., Wang, L., Qiu, Z., Zhang, D., et al. (2020). Hytasker: Hybrid task allocation in mobile crowd sensing. IEEE Transactions on Mobile Computing, 19(3), 598–611.CrossRef Jiangtao, W., Wang, F., Wang, Y., Wang, L., Qiu, Z., Zhang, D., et al. (2020). Hytasker: Hybrid task allocation in mobile crowd sensing. IEEE Transactions on Mobile Computing, 19(3), 598–611.CrossRef
15.
go back to reference Kang, X., Liu, L., Ma, H.(2016). Data correlation based crowdsensing enhancement for environment monitoring. In: The 2016 IEEE International Conference on Communications, pp. 1–6. Kang, X., Liu, L., Ma, H.(2016). Data correlation based crowdsensing enhancement for environment monitoring. In: The 2016 IEEE International Conference on Communications, pp. 1–6.
16.
go back to reference Karaman, S., Shima, T., Frazzoli, E. (2013). Effective task assignment for complex uav operations using genetic algorithms. In: AIAA Guidance, Navigation, and Control Conference. 10.2514/6.2009-6211. Karaman, S., Shima, T., Frazzoli, E. (2013). Effective task assignment for complex uav operations using genetic algorithms. In: AIAA Guidance, Navigation, and Control Conference. 10.2514/6.2009-6211.
17.
go back to reference Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. Advances in Neural Information Processing Systems, 31, 537–546.CrossRef Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. Advances in Neural Information Processing Systems, 31, 537–546.CrossRef
18.
go back to reference Li, Z., Yang, Z., & Yi, Z. (2019). Prospect of unmanned marine surveying and mapping technology. Marine Technology, 38(1), 85–91. Li, Z., Yang, Z., & Yi, Z. (2019). Prospect of unmanned marine surveying and mapping technology. Marine Technology, 38(1), 85–91.
19.
go back to reference Liu, L.(2006). Research on multi-robot system task allocation and formation control. Ph.D. thesis, National University of Defense Technology, Changsha, China. Liu, L.(2006). Research on multi-robot system task allocation and formation control. Ph.D. thesis, National University of Defense Technology, Changsha, China.
20.
go back to reference Liu, Y., Guo, B., Wu, W., Yu, Z., & Daqing, Z. (2016). Multitask-oriented participant selection in mobile crowd sensing. Chinese Journal of Computers, 39, 386–389. Liu, Y., Guo, B., Wu, W., Yu, Z., & Daqing, Z. (2016). Multitask-oriented participant selection in mobile crowd sensing. Chinese Journal of Computers, 39, 386–389.
21.
go back to reference Miao, C., Yu, H., Shen, Z., & Leung, C. (2016). Balancing quality and budget considerations in mobile crowdsourcing. Decision Support Systems, 90, 56–64.CrossRef Miao, C., Yu, H., Shen, Z., & Leung, C. (2016). Balancing quality and budget considerations in mobile crowdsourcing. Decision Support Systems, 90, 56–64.CrossRef
22.
go back to reference Ra, M.R., Liu, B., La Porta, T.F., Govindan, R.(2012). Medusa: A programming framework for crowd-sensing applications. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, p. 337–350. ACM, New York, NY, USA. Ra, M.R., Liu, B., La Porta, T.F., Govindan, R.(2012). Medusa: A programming framework for crowd-sensing applications. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, p. 337–350. ACM, New York, NY, USA.
23.
go back to reference Ramirez-Atencia, C., R-Moreno, M., & Camacho, D. (2017). Handling swarm of uavs based on evolutionary multi-objective optimization. Progress in Artificial Intelligence, 6(3), 263–274.CrossRef Ramirez-Atencia, C., R-Moreno, M., & Camacho, D. (2017). Handling swarm of uavs based on evolutionary multi-objective optimization. Progress in Artificial Intelligence, 6(3), 263–274.CrossRef
24.
go back to reference Rasmussen, S. J., & Shima, T. (2008). Tree search algorithm for assigning cooperating uavs to multiple tasks. International Journal of Robust and Nonlinear Control, 18(2), 135–153.MathSciNetCrossRef Rasmussen, S. J., & Shima, T. (2008). Tree search algorithm for assigning cooperating uavs to multiple tasks. International Journal of Robust and Nonlinear Control, 18(2), 135–153.MathSciNetCrossRef
25.
go back to reference Shaferman, V., Shima, T. (2009). Task assignment and motion planning for multiple uavs tracking multiple targets in urban environments. In: AIAA Guidance, Navigation, and Control Conference. 10.2514/6.2009-5778 Shaferman, V., Shima, T. (2009). Task assignment and motion planning for multiple uavs tracking multiple targets in urban environments. In: AIAA Guidance, Navigation, and Control Conference. 10.2514/6.2009-5778
26.
go back to reference Sheng, V., & Zhang, J. (2019). Machine learning with crowdsourcing: A brief summary of the past research and future directions. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9837–9843. Sheng, V., & Zhang, J. (2019). Machine learning with crowdsourcing: A brief summary of the past research and future directions. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9837–9843.
27.
go back to reference Sheng, V. S., Zhang, J., Gu, B., & Wu, X. (2019). Majority voting and pairing with multiple noisy labeling. IEEE Transactions on Knowledge and Data Engineering, 31(7), 1355–1368.CrossRef Sheng, V. S., Zhang, J., Gu, B., & Wu, X. (2019). Majority voting and pairing with multiple noisy labeling. IEEE Transactions on Knowledge and Data Engineering, 31(7), 1355–1368.CrossRef
28.
go back to reference Sun, G., Wang, Y., Ding, X., & Hu, R. (2021). Cost-fair task allocation in mobile crowd sensing with probabilistic users. IEEE Transactions on Mobile Computing, 20(2), 598–611.CrossRef Sun, G., Wang, Y., Ding, X., & Hu, R. (2021). Cost-fair task allocation in mobile crowd sensing with probabilistic users. IEEE Transactions on Mobile Computing, 20(2), 598–611.CrossRef
29.
go back to reference Tao, D., Gao, R., Sun, H.(2020). Sensing-gain constrained participant selection mechanism for mobile crowdsensing. Personal and Ubiquitous Computing pp. 1–15 . 10.1007/s00779-020-01470-8 Tao, D., Gao, R., Sun, H.(2020). Sensing-gain constrained participant selection mechanism for mobile crowdsensing. Personal and Ubiquitous Computing pp. 1–15 . 10.1007/s00779-020-01470-8
30.
go back to reference Wang, J., Wang, Y., Zhang, D., Wang, F., & Qiu, Z. (2018). Multi-task allocation in mobile crowd sensing with individual task quality assurance. IEEE Transactions on Mobile Computing, 17(9), 2101–2113.CrossRef Wang, J., Wang, Y., Zhang, D., Wang, F., & Qiu, Z. (2018). Multi-task allocation in mobile crowd sensing with individual task quality assurance. IEEE Transactions on Mobile Computing, 17(9), 2101–2113.CrossRef
31.
go back to reference Wang, L. (2013). Research on the development status and trend of uav. Technology and Enterprise, 14, 349. Wang, L. (2013). Research on the development status and trend of uav. Technology and Enterprise, 14, 349.
32.
go back to reference Wang, Q., Wan, G., Chai, Z., & Li, D. (2018). Multiple targets assignment of multiple uavs’ cooperation based on improved genetic algorithm. Application Research of Computers, 35(9), 43–47. Wang, Q., Wan, G., Chai, Z., & Li, D. (2018). Multiple targets assignment of multiple uavs’ cooperation based on improved genetic algorithm. Application Research of Computers, 35(9), 43–47.
33.
go back to reference Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M., & Qi, L. (2020). Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet of Things Journal, 7(9), 7919–7927.CrossRef Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M., & Qi, L. (2020). Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet of Things Journal, 7(9), 7919–7927.CrossRef
34.
go back to reference Xu, X., Wu, Q., Qi, L., Dou, W., Tsai, S. B., & Bhuiyan, M. Z. A. (2021). Trust-aware service offloading for video surveillance in edge computing enabled internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1787–1796.CrossRef Xu, X., Wu, Q., Qi, L., Dou, W., Tsai, S. B., & Bhuiyan, M. Z. A. (2021). Trust-aware service offloading for video surveillance in edge computing enabled internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1787–1796.CrossRef
35.
go back to reference Zhang, J., Wu, X., & Sheng, V. S. (2016). Learning from crowdsourced labeled data: A survey. Artificial Intelligence Review, 46(4), 543–576.CrossRef Zhang, J., Wu, X., & Sheng, V. S. (2016). Learning from crowdsourced labeled data: A survey. Artificial Intelligence Review, 46(4), 543–576.CrossRef
36.
go back to reference Zhang, P., Rui, L., Qiu, X.(2016). Research on location related task allocation in mobile crowd sensing system. In: Proceedings and Exchange Papers of 2016 National Communication Software Academic Conference, pp. 95–102. Zhang, P., Rui, L., Qiu, X.(2016). Research on location related task allocation in mobile crowd sensing system. In: Proceedings and Exchange Papers of 2016 National Communication Software Academic Conference, pp. 95–102.
Metadata
Title
Task allocation for unmanned aerial vehicles in mobile crowdsensing
Publication date
11-05-2021
Published in
Wireless Networks
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02638-7