Skip to main content
Top

2020 | OriginalPaper | Chapter

TBAF Fluorination for Preparing Alkyl Fluorides

Authors : Haoran Sun, Stephen G. DiMagno

Published in: Fluorination

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Fluorinated alkyl substituents appear widely in medicinal and pharmaceutical chemistry [17], and [18F]-fluorinated ethyl or propyl tags are increasingly common tools radiochemists use to prepare [18F]-labeled radiopharmaceuticals for positron emission tomography (PET) [811]. Numerous fluorinating reagents that are available to prepare alkyl fluorides through nucleophilic, electrophilic, and radical approaches are covered elsewhere in this volume. Here we will review fluorinations with the readily available and prototypical nucleophilic fluorinating reagent tetrabutylammonium fluoride (TBAF) and its derivatives. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Champagne, P. A., J. Desroches, J.-D. Hamel, M. Vandamme and J.-F. Paquin (2015). “Monofluorination of Organic Compounds: 10 Years of Innovation.” Chem. Rev. 115(17): 9073–9174.PubMed Champagne, P. A., J. Desroches, J.-D. Hamel, M. Vandamme and J.-F. Paquin (2015). “Monofluorination of Organic Compounds: 10 Years of Innovation.” Chem. Rev. 115(17): 9073–9174.PubMed
2.
go back to reference Di Magno, S. G. and H. Sun (2006). “The strength of weak interactions: aromatic fluorine in drug design.” Curr. Top. Med. Chem. 6(14): 1473–1482. Di Magno, S. G. and H. Sun (2006). “The strength of weak interactions: aromatic fluorine in drug design.” Curr. Top. Med. Chem. 6(14): 1473–1482.
3.
go back to reference Hagmann, W. K. (2008).”The Many Roles for Fluorine in Medicinal Chemistry.” J. Med. Chem. 51(15): 4359–4369.PubMed Hagmann, W. K. (2008).”The Many Roles for Fluorine in Medicinal Chemistry.” J. Med. Chem. 51(15): 4359–4369.PubMed
4.
go back to reference Muller, K., C. Faeh and F. Diederich (2007). “Fluorine in pharmaceuticals: looking beyond intuition.” Science 317(5846): 1881–1886.PubMed Muller, K., C. Faeh and F. Diederich (2007). “Fluorine in pharmaceuticals: looking beyond intuition.” Science 317(5846): 1881–1886.PubMed
5.
go back to reference Ni, C., M. Hu and J. Hu (2015). “Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis.” Chem. Rev. 115(2): 765–825.PubMed Ni, C., M. Hu and J. Hu (2015). “Good Partnership between Sulfur and Fluorine: Sulfur-Based Fluorination and Fluoroalkylation Reagents for Organic Synthesis.” Chem. Rev. 115(2): 765–825.PubMed
6.
go back to reference O’Hagan, D. (2010). “Fluorine in health care: Organofluorine containing blockbuster drugs.” J. Fluorine Chem. 131(11): 1071–1081. O’Hagan, D. (2010). “Fluorine in health care: Organofluorine containing blockbuster drugs.” J. Fluorine Chem. 131(11): 1071–1081.
7.
go back to reference Percy, J. M. (1997). “Building block approaches to aliphatic organofluorine compounds.” Top. Curr. Chem. 193(Organofluorine Chemistry): 131–195. Percy, J. M. (1997). “Building block approaches to aliphatic organofluorine compounds.” Top. Curr. Chem. 193(Organofluorine Chemistry): 131–195.
8.
go back to reference Gallagher, B. M., J. S. Fowler, N. I. Gutterson, R. R. MacGregor, C.-N. Wan and A. P. Wolf (1978). “Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]-2-deoxy-2-fluoro-D-glucose.” J. Nucl. Med. 19(10): 1154–1161.PubMed Gallagher, B. M., J. S. Fowler, N. I. Gutterson, R. R. MacGregor, C.-N. Wan and A. P. Wolf (1978). “Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]-2-deoxy-2-fluoro-D-glucose.” J. Nucl. Med. 19(10): 1154–1161.PubMed
9.
go back to reference Kim, D. W., D.-S. Ahn, Y.-H. Oh, S. Lee, H. S. Kil, S. J. Oh, S. J. Lee, J. S. Kim, J. S. Ryu, D. H. Moon and D. Y. Chi (2006). “A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules.” J. Am. Chem. Soc. 128(50): 16394–16397.PubMed Kim, D. W., D.-S. Ahn, Y.-H. Oh, S. Lee, H. S. Kil, S. J. Oh, S. J. Lee, J. S. Kim, J. S. Ryu, D. H. Moon and D. Y. Chi (2006). “A New Class of SN2 Reactions Catalyzed by Protic Solvents: Facile Fluorination for Isotopic Labeling of Diagnostic Molecules.” J. Am. Chem. Soc. 128(50): 16394–16397.PubMed
10.
go back to reference Okarvi, S. M. (2001). “Recent progress in fluorine-18 labelled peptide radiopharmaceuticals.” Eur. J. Nucl. Med. 28(7): 929–938.PubMed Okarvi, S. M. (2001). “Recent progress in fluorine-18 labelled peptide radiopharmaceuticals.” Eur. J. Nucl. Med. 28(7): 929–938.PubMed
11.
go back to reference Young, H., R. Baum, U. Cremerius, K. Herholz, O. Hoekstra, A. A. Lammertsma, J. Pruim and P. Price (1999). “Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group.” Eur J Cancer 35(13): 1773–1782.PubMed Young, H., R. Baum, U. Cremerius, K. Herholz, O. Hoekstra, A. A. Lammertsma, J. Pruim and P. Price (1999). “Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group.” Eur J Cancer 35(13): 1773–1782.PubMed
12.
go back to reference Christe, K. O. and H. D. B. Jenkins (2003). “Quantitative Measure for the “Nakedness” of Fluoride Ion Sources.” J. Am. Chem. Soc. 125(31): 9457–9461.PubMed Christe, K. O. and H. D. B. Jenkins (2003). “Quantitative Measure for the “Nakedness” of Fluoride Ion Sources.” J. Am. Chem. Soc. 125(31): 9457–9461.PubMed
13.
go back to reference Christe, K. O., W. W. Wilson, R. D. Wilson, R. Bau and J. A. Feng (1990). “Syntheses, properties, and structures of anhydrous tetramethylammonium fluoride and its 1:1 adduct with trans-3-amino-2-butenenitrile.” J. Am. Chem. Soc. 112(21): 7619–7625. Christe, K. O., W. W. Wilson, R. D. Wilson, R. Bau and J. A. Feng (1990). “Syntheses, properties, and structures of anhydrous tetramethylammonium fluoride and its 1:1 adduct with trans-3-amino-2-butenenitrile.” J. Am. Chem. Soc. 112(21): 7619–7625.
14.
go back to reference Harmon, K. M. and I. Gennick (1975). “Hydrogen bonding. V. Possible existence of strongly hydrogen-bonded water-fluoride and water-hydroxide complex anions, (F-.H2O)22- and (OH-.H2O)22-, in tetramethylammonium ion salt hydrates.” Inorg. Chem. 14(8): 1840–1845. Harmon, K. M. and I. Gennick (1975). “Hydrogen bonding. V. Possible existence of strongly hydrogen-bonded water-fluoride and water-hydroxide complex anions, (F-.H2O)22- and (OH-.H2O)22-, in tetramethylammonium ion salt hydrates.” Inorg. Chem. 14(8): 1840–1845.
15.
go back to reference Hayami, J., N. Ono and A. Kaji (1968). “Quaternary ammonium fluorides. A reagent for proton abstraction.” Tetrahedron Lett.(11): 1385–1386. Hayami, J., N. Ono and A. Kaji (1968). “Quaternary ammonium fluorides. A reagent for proton abstraction.” Tetrahedron Lett.(11): 1385–1386.
16.
go back to reference Sun, H. and S. G. DiMagno (2005). “Anhydrous Tetrabutylammonium Fluoride.” J. Am. Chem. Soc. 127(7): 2050–2051.PubMed Sun, H. and S. G. DiMagno (2005). “Anhydrous Tetrabutylammonium Fluoride.” J. Am. Chem. Soc. 127(7): 2050–2051.PubMed
17.
go back to reference Sun, H. and S. G. DiMagno (2007). “Competitive demethylation and substitution in N,N,N-trimethylanilinium fluorides.” J. Fluorine Chem. 128(7): 806–812. Sun, H. and S. G. DiMagno (2007). “Competitive demethylation and substitution in N,N,N-trimethylanilinium fluorides.” J. Fluorine Chem. 128(7): 806–812.
18.
go back to reference Sun, H. and S. G. DiMagno (2007). “Fluoride relay: a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF.” Chem. Commun.(5): 528–529. Sun, H. and S. G. DiMagno (2007). “Fluoride relay: a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF.” Chem. Commun.(5): 528–529.
19.
go back to reference Sun, H., B. Wang and S. G. DiMagno (2008). “Ion pairing of “weaklycoordinated” fluoride salts.” Chemistry Today 26(3): 4–6. Sun, H., B. Wang and S. G. DiMagno (2008). “Ion pairing of “weaklycoordinated” fluoride salts.” Chemistry Today 26(3): 4–6.
20.
go back to reference Pfeifer, L., K. M. Engle, G. W. Pidgeon, H. A. Sparkes, A. L. Thompson, J. M. Brown and V. Gouverneur (2016). “Hydrogen-Bonded Homoleptic Fluoride-Diarylurea Complexes: Structure, Reactivity, and Coordinating Power.” J. Am. Chem. Soc. 138(40): 13314–13325.PubMed Pfeifer, L., K. M. Engle, G. W. Pidgeon, H. A. Sparkes, A. L. Thompson, J. M. Brown and V. Gouverneur (2016). “Hydrogen-Bonded Homoleptic Fluoride-Diarylurea Complexes: Structure, Reactivity, and Coordinating Power.” J. Am. Chem. Soc. 138(40): 13314–13325.PubMed
21.
go back to reference Cox, D. P., J. Terpinski and W. Lawrynowicz (1984). “\“Anhydrous\” tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion.” J. Org. Chem. 49(17): 3216–3219. Cox, D. P., J. Terpinski and W. Lawrynowicz (1984). “\“Anhydrous\” tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion.” J. Org. Chem. 49(17): 3216–3219.
22.
go back to reference Sharma, R. K. and J. L. Fry (1983). “Instability of anhydrous tetra-n-alkylammonium fluorides.” J. Org. Chem. 48(12): 2112–2114. Sharma, R. K. and J. L. Fry (1983). “Instability of anhydrous tetra-n-alkylammonium fluorides.” J. Org. Chem. 48(12): 2112–2114.
23.
go back to reference Sun, H. and S. G. DiMagno (2006). “Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies.” Angew. Chem., Int. Ed. 45(17): 2720–2725. Sun, H. and S. G. DiMagno (2006). “Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies.” Angew. Chem., Int. Ed. 45(17): 2720–2725.
24.
go back to reference Kumar, M. B. (2002). “Tetrabutylammonium fluoride: TBAF.” Synlett(12): 2125–2126. Kumar, M. B. (2002). “Tetrabutylammonium fluoride: TBAF.” Synlett(12): 2125–2126.
25.
go back to reference Heuft, M. A., S. K. Collins, G. P. A. Yap and A. G. Fallis (2001). “Synthesis of Diynes and Tetraynes from in Situ Desilylation/Dimerization of Acetylenes.” Org. Lett. 3(18): 2883–2886.PubMed Heuft, M. A., S. K. Collins, G. P. A. Yap and A. G. Fallis (2001). “Synthesis of Diynes and Tetraynes from in Situ Desilylation/Dimerization of Acetylenes.” Org. Lett. 3(18): 2883–2886.PubMed
26.
go back to reference Jacquemard, U., V. Beneteau, M. Lefoix, S. Routier, J.-Y. Merour and G. Coudert (2004). “Mild and selective deprotection of carbamates with Bu4NF.” Tetrahedron 60(44): 10039–10047. Jacquemard, U., V. Beneteau, M. Lefoix, S. Routier, J.-Y. Merour and G. Coudert (2004). “Mild and selective deprotection of carbamates with Bu4NF.” Tetrahedron 60(44): 10039–10047.
27.
go back to reference Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2008). “Tetrabutylammonium tetra (tert-butyl alcohol)-coordinated fluoride as a facile fluoride source.” Angew. Chem., Int. Ed. 47(44): 8404–8406. Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2008). “Tetrabutylammonium tetra (tert-butyl alcohol)-coordinated fluoride as a facile fluoride source.” Angew. Chem., Int. Ed. 47(44): 8404–8406.
28.
go back to reference Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2010). “Facile nucleophilic fluorination of primary alkyl halides using tetrabutylammonium fluoride in a tert-alcohol medium.” Tetrahedron Lett. 51(2): 432–434. Kim, D. W., H.-J. Jeong, S. T. Lim and M.-H. Sohn (2010). “Facile nucleophilic fluorination of primary alkyl halides using tetrabutylammonium fluoride in a tert-alcohol medium.” Tetrahedron Lett. 51(2): 432–434.
29.
go back to reference Engle, K. M., L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi, A. L. Thompson, R. S. Paton, J. M. Brown and V. Gouverneur (2015). “Coordination diversity in hydrogen-bonded homoleptic fluoride-alcohol complexes modulates reactivity.” Chem. Sci. 6(9): 5293–5302.PubMedPubMedCentral Engle, K. M., L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi, A. L. Thompson, R. S. Paton, J. M. Brown and V. Gouverneur (2015). “Coordination diversity in hydrogen-bonded homoleptic fluoride-alcohol complexes modulates reactivity.” Chem. Sci. 6(9): 5293–5302.PubMedPubMedCentral
30.
go back to reference Blasiak, L. C. and C. L. Drennan (2009). “Structural Perspective on Enzymatic Halogenation.” Acc. Chem. Res. 42(1): 147–155.PubMed Blasiak, L. C. and C. L. Drennan (2009). “Structural Perspective on Enzymatic Halogenation.” Acc. Chem. Res. 42(1): 147–155.PubMed
31.
go back to reference Carvalho, M. F. and R. S. Oliveira (2017). “Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme.” Crit. Rev. Biotechnol.: Ahead of Print. Carvalho, M. F. and R. S. Oliveira (2017). “Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme.” Crit. Rev. Biotechnol.: Ahead of Print.
32.
go back to reference Lee, J.-W., M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim and C. E. Song (2016). “Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography.” Chem. Soc. Rev. 45(17): 4638–4650.PubMed Lee, J.-W., M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi, D. W. Kim and C. E. Song (2016). “Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography.” Chem. Soc. Rev. 45(17): 4638–4650.PubMed
33.
go back to reference O’Hagan, D. and H. Deng (2015). “Enzymatic Fluorination and Biotechnological Developments of the Fluorinase.” Chem. Rev. 115(2): 634–649.PubMed O’Hagan, D. and H. Deng (2015). “Enzymatic Fluorination and Biotechnological Developments of the Fluorinase.” Chem. Rev. 115(2): 634–649.PubMed
34.
go back to reference Sun, H., W. L. Yeo, Y. H. Lim, X. Chew, D. J. Smith, B. Xue, K. P. Chan, R. C. Robinson, E. G. Robins, H. Zhao and E. L. Ang (2016). “Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate.” Angew. Chem., Int. Ed. 55(46): 14277–14280. Sun, H., W. L. Yeo, Y. H. Lim, X. Chew, D. J. Smith, B. Xue, K. P. Chan, R. C. Robinson, E. G. Robins, H. Zhao and E. L. Ang (2016). “Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate.” Angew. Chem., Int. Ed. 55(46): 14277–14280.
35.
go back to reference Bosch, P., F. Camps, E. Chamorro, V. Gasol and A. Guerrero (1987). “Tetrabutylammonium bifluoride: a versatile and efficient fluorinating agent.” Tetrahedron Lett. 28(40): 4733–4736. Bosch, P., F. Camps, E. Chamorro, V. Gasol and A. Guerrero (1987). “Tetrabutylammonium bifluoride: a versatile and efficient fluorinating agent.” Tetrahedron Lett. 28(40): 4733–4736.
36.
go back to reference Shenderovich, I. G., S. N. Smirnov, G. S. Denisov, V. A. Gindin, N. S. Golubev, A. Dunger, R. Reibke, S. Kirpekar, O. L. Malkina and H. H. Limbach (1998). “Nuclear magnetic resonance of hydrogen-bonded clusters between F- and (HF)n. Experiment and theory.” Berichte der Bunsen-Gesellschaft 102(3): 422–428. Shenderovich, I. G., S. N. Smirnov, G. S. Denisov, V. A. Gindin, N. S. Golubev, A. Dunger, R. Reibke, S. Kirpekar, O. L. Malkina and H. H. Limbach (1998). “Nuclear magnetic resonance of hydrogen-bonded clusters between F- and (HF)n. Experiment and theory.” Berichte der Bunsen-Gesellschaft 102(3): 422–428.
37.
go back to reference Bennett, B. K., R. G. Harrison and T. G. Richmond (1994). “Cobaltocenium Fluoride: A Novel Source of “Naked” Fluoride Formed by Carbon-Fluorine Bond Activation in a Saturated Perfluorocarbon.” J. Am. Chem. Soc. 116(24): 11165–11166. Bennett, B. K., R. G. Harrison and T. G. Richmond (1994). “Cobaltocenium Fluoride: A Novel Source of “Naked” Fluoride Formed by Carbon-Fluorine Bond Activation in a Saturated Perfluorocarbon.” J. Am. Chem. Soc. 116(24): 11165–11166.
38.
go back to reference Pilcher, A. S., H. L. Ammon and P. DeShong (1995). “Utilization of Tetrabutylammonium Triphenylsilyldifluoride as a Fluoride Source for Nucleophilic Fluorination.” J. Am. Chem. Soc. 117(18): 5166–5167. Pilcher, A. S., H. L. Ammon and P. DeShong (1995). “Utilization of Tetrabutylammonium Triphenylsilyldifluoride as a Fluoride Source for Nucleophilic Fluorination.” J. Am. Chem. Soc. 117(18): 5166–5167.
39.
go back to reference Moughamir, K., A. Atmani, H. Mestdagh, C. Rolando and C. Francesch (1998). “Activation of tetrabutylammonium hydrogen difluoride with pyridine: a mild and efficient procedure for nucleophilic fluorination.” Tetrahedron Lett. 39(40): 7305–7306. Moughamir, K., A. Atmani, H. Mestdagh, C. Rolando and C. Francesch (1998). “Activation of tetrabutylammonium hydrogen difluoride with pyridine: a mild and efficient procedure for nucleophilic fluorination.” Tetrahedron Lett. 39(40): 7305–7306.
40.
go back to reference Akiyama, Y., C. Hiramatsu, T. Fukuhara and S. Hara (2006). “Selective introduction of a fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination reaction of epoxides.” J. Fluorine Chem. 127(7): 920–923. Akiyama, Y., C. Hiramatsu, T. Fukuhara and S. Hara (2006). “Selective introduction of a fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination reaction of epoxides.” J. Fluorine Chem. 127(7): 920–923.
41.
go back to reference Shimizu, M., Y. Nakahara and H. Yoshioka (1985). “Chemoselective fluorination for primary alcohols.” Tetrahedron Lett. 26(35): 4207–4210. Shimizu, M., Y. Nakahara and H. Yoshioka (1985). “Chemoselective fluorination for primary alcohols.” Tetrahedron Lett. 26(35): 4207–4210.
42.
go back to reference Park, C., B. S. Lee and D. Y. Chi (2013). “High Efficiency Synthesis of F-18 Fluoromethyl Ethers: An Attractive Alternative for C-11 Methyl Groups in Positron Emission Tomography Radiopharmaceuticals.” Org. Lett. 15(17): 4346–4349.PubMed Park, C., B. S. Lee and D. Y. Chi (2013). “High Efficiency Synthesis of F-18 Fluoromethyl Ethers: An Attractive Alternative for C-11 Methyl Groups in Positron Emission Tomography Radiopharmaceuticals.” Org. Lett. 15(17): 4346–4349.PubMed
Metadata
Title
TBAF Fluorination for Preparing Alkyl Fluorides
Authors
Haoran Sun
Stephen G. DiMagno
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3896-9_14

Premium Partners