Skip to main content
Top

2018 | OriginalPaper | Chapter

Team RoboSimian: Semi-autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals

Authors : Sisir Karumanchi, Kyle Edelberg, Ian Baldwin, Jeremy Nash, Brian Satzinger, Jason Reid, Charles Bergh, Chelsea Lau, John Leichty, Kalind Carpenter, Matthew Shekels, Matthew Gildner, David Newill-Smith, Jason Carlton, John Koehler, Tatyana Dobreva, Matthew Frost, Paul Hebert, James Borders, Jeremy Ma, Bertrand Douillard, Krishna Shankar, Katie Byl, Joel Burdick, Paul Backes, Brett Kennedy

Published in: The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article discusses hardware and software improvements to the RoboSimian system leading up to and during the 2015 DARPA Robotics Challenge (DRC) Finals. Team RoboSimian achieved a 5th place finish by achieving 7 points in 47:59 min. We present an architecture that was structured to be adaptable at the lowest level and repeatable at the highest level. The low-level adaptability was achieved by leveraging tactile measurements from force torque sensors in the wrist coupled with whole body motion primitives. We use the term “behaviors” to conceptualize this low-level adaptability. Each behavior is a contact-triggered state machine that enables execution of short order manipulation and mobility tasks autonomously. At a high level, we focused on a teach-and-repeat style of development by storing executed behaviors and navigation poses in object/task frame for recall later. This enabled us to perform tasks with high repeatability on competition day while being robust to task differences from practice to execution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Behaviors are executed in body frame but are stored in task frame for recall. When a task/object is fit in world frame, we can get the task-to-body transform based on current robot state in the world frame. The stored behaviors generate body frame constraints for motion planning.
 
2
At DRC finals, repeatability was at the task level which was considered high level (e.g. turn the valve with consistent trial-by-trial execution) and adaptability was at the body contact level (e.g. adapt to changing forces as the robot interacts physically).
 
3
We made a special effort to design the mobility and manipulation planners so that the processes on the robot and OCU side would never be unsynchronized. For example, the processes transmit plan requests and action requests over TCP to guarantee delivery over the wireless links and plan with the compressed robot state in order to be numerically consistent with the worst case state estimate on the remote side.
 
4
Does not include the body pose.
 
5
Body pose is specified in 6 dimensions; a 3D position vector and a 3D rotation vector in angle-scaled axis form.
 
6
By bounding the robot start and end states, one is able to avoid kinematic drift which can occur to due minor variations in the input parameters across multiple executions of a planner.
 
7
This enforces that the manipulation hand is in a conic field of view.
 
8
\(c_{pos}()\) is represented by the euclidean distance metric.
 
9
\(c_{orient}()\) is represented by \(cos({tol})-1 \le 0.5*Trace((R^{W}_1)^T R^{W}_2) -1 \le 0\) where \(R^{W}_1\) and \(R^{W}_2\) are two rotation matrices.
 
10
\(c_{gaze}()\) is represented by \(cos({tol})-1 \le (\frac{p_{tar}-p_{cam}}{\Vert p_{tar}-p_{cam}\Vert })^T(R^{W}_{cam}u^{cam}_{axis}) -1 \le 0\) where \(p_{tar}\) is position of the gaze target, \(p_{cam}\) is position of the camera, \(R^{W}_{cam}\) is the orientation of the camera in world frame and \(u^{cam}_{axis}\) is a desired gaze axis in camera frame.
 
11
\(c_{margin}()\) is represented by \(-\inf \le \{ -sign(n^T(p_{ee_{3}} - p_{ee_1}))*(n^T(p_{com} - p_{ee_2}))+margin \} \le 0\), where \(n = \frac{(p_{ee_1} - p_{ee_2}) \times n_{support\_plane}}{\Vert (p_{ee_1} - p_{ee_2}) \times n_{support\_plane}\Vert }\); \(p_{ee_1}\), \(p_{ee_2}\) and \(p_{ee_3}\) are positions of the end effectors on the boundary of the support polygon, \(p_{ee_3}\) is the furthest end effector from the limb that is moving, \(p_{com}\) is the position of the center of mass (COM), and finally margin specifies a fixed tolerance in the directional distance of the COM from the active boundary of the support polygon.
 
12
\(c_{res}()\) is represented by \((\theta -\theta _{prev})^T(\theta -\theta _{prev})\).
 
13
The timing data was derived from DARPA video casts on you tube (DARPA 2015b, a). Day 1 run of RoboSimian on the red course starts at https://​youtu.​be/​vgt6FPWU2Lc?​t=​17932, and we received our 7th point at https://​youtu.​be/​vgt6FPWU2Lc?​t=​20810 (DARPA 2015b). Day 2 run of RoboSimian on the blue course starts at https://​youtu.​be/​s6ZdC_​ZJXK8?​t=​35864, and we received our 7th point at https://​youtu.​be/​s6ZdC_​ZJXK8?​t=​39148 (DARPA 2015a).
 
Literature
go back to reference Backes, P., Diaz-Calderon, A., Robinson, M., Bajracharya, M., & Helmick, D. (2005). Automated rover positioning and instrument placement. In Aerospace Conference (pp. 60–71). IEEE. Backes, P., Diaz-Calderon, A., Robinson, M., Bajracharya, M., & Helmick, D. (2005). Automated rover positioning and instrument placement. In Aerospace Conference (pp. 60–71). IEEE.
go back to reference Backes, P., Lindemann, R., Collins, C., & Younse, P. (2010). An integrated coring and caching concept. In Aerospace Conference (pp. 1–7). IEEE. Backes, P., Lindemann, R., Collins, C., & Younse, P. (2010). An integrated coring and caching concept. In Aerospace Conference (pp. 1–7). IEEE.
go back to reference Backes, P. G. (1991). Generalized compliant motion with sensor fusion. In Fifth International Conference on Advanced Robotics. 91 ICAR. Robots in Unstructured Environments (pp. 1281–1286). IEEE. Backes, P. G. (1991). Generalized compliant motion with sensor fusion. In Fifth International Conference on Advanced Robotics. 91 ICAR. Robots in Unstructured Environments (pp. 1281–1286). IEEE.
go back to reference Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. Robotics-DL tentative. International Society for Optics and Photonics. Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. Robotics-DL tentative. International Society for Optics and Photonics.
go back to reference Buehler, M., Iagnemma, K., & Singh, S. (2007). The 2005 DARPA grand challenge: The great robot race (Vol. 36). Springer Science & Business Media. Buehler, M., Iagnemma, K., & Singh, S. (2007). The 2005 DARPA grand challenge: The great robot race (Vol. 36). Springer Science & Business Media.
go back to reference Buehler, M., Iagnemma, K., & Singh, S. (2009). The DARPA urban challenge: Autonomous vehicles in city traffic. Berlin, Heidelberg: Springer. Buehler, M., Iagnemma, K., & Singh, S. (2009). The DARPA urban challenge: Autonomous vehicles in city traffic. Berlin, Heidelberg: Springer.
go back to reference Buss, S. R. (2004). Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19). Buss, S. R. (2004). Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1–19).
go back to reference Chen, Y. & Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing. Chen, Y. & Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing.
go back to reference Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.
go back to reference Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2015). Optimization-based full body control for the DARBA robotics challenge. Journal of Field Robotics, 32(2), 293–312. Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2015). Optimization-based full body control for the DARBA robotics challenge. Journal of Field Robotics, 32(2), 293–312.
go back to reference Hackett, D., Pippine, J., Watson, A., Sullivan, C., & Pratt, G. (2014). Foreword to the special issue on autonomous grasping and manipulation: The DARPA autonomous robotic manipulation (ARM) program: A synopsis. Autonomous Robots, 36(1–2), 5–9. Hackett, D., Pippine, J., Watson, A., Sullivan, C., & Pratt, G. (2014). Foreword to the special issue on autonomous grasping and manipulation: The DARPA autonomous robotic manipulation (ARM) program: A synopsis. Autonomous Robots, 36(1–2), 5–9.
go back to reference Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R., et al. (1997). The rocky 7 rover: A mars sciencecraft prototype. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 3, pp. 2458–2464). IEEE. Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R., et al. (1997). The rocky 7 rover: A mars sciencecraft prototype. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 3, pp. 2458–2464). IEEE.
go back to reference Hebert, P., Aydemir, A., Borders, J., Bajracharya, M., Hudson, N., Shankar, K., et al. (2015a). Supervised remote robot with guided autonomy and teleoperation (surrogate): A framework for whole-body manipulation. In IEEE International Conference on Robotics and Automation (ICRA). Hebert, P., Aydemir, A., Borders, J., Bajracharya, M., Hudson, N., Shankar, K., et al. (2015a). Supervised remote robot with guided autonomy and teleoperation (surrogate): A framework for whole-body manipulation. In IEEE International Conference on Robotics and Automation (ICRA).
go back to reference Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015b). Mobile manipulation and mobility as manipulation—Design and algorithms of robosimian. Journal of Field Robotics. Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015b). Mobile manipulation and mobility as manipulation—Design and algorithms of robosimian. Journal of Field Robotics.
go back to reference Howard, A. (2008). Real-time stereo visual odometry for autonomous ground vehicles. In International Conference on Robots and Systems (IROS). Howard, A. (2008). Real-time stereo visual odometry for autonomous ground vehicles. In International Conference on Robots and Systems (IROS).
go back to reference Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., et al. (2012). End-to-end dexterous manipulation with deliberate interactive estimation. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2371–2378). Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., et al. (2012). End-to-end dexterous manipulation with deliberate interactive estimation. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2371–2378).
go back to reference Hudson, N., Ma, J., Hebert, P., Jain, A., Bajracharya, M., Allen, T., et al. (2014). Model-based autonomous system for performing dexterous, human-level manipulation tasks. Autonomous Robots, 36(1–2), 31–49. Hudson, N., Ma, J., Hebert, P., Jain, A., Bajracharya, M., Allen, T., et al. (2014). Model-based autonomous system for performing dexterous, human-level manipulation tasks. Autonomous Robots, 36(1–2), 31–49.
go back to reference Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.
go back to reference Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). Stomp: Stochastic trajectory optimization for motion planning. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 4569–4574). IEEE. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). Stomp: Stochastic trajectory optimization for motion planning. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 4569–4574). IEEE.
go back to reference Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team IHMC’s virtual robotics challenge entry. In 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 307–314). IEEE. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team IHMC’s virtual robotics challenge entry. In 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 307–314). IEEE.
go back to reference Kuffner, J. J., & LaValle, S. (2000). RRT-connect: An efficient approach to single-query path planning. In IEEE International Conference on Robotics and Automation (Vol. 2, pp. 995–1001). Kuffner, J. J., & LaValle, S. (2000). RRT-connect: An efficient approach to single-query path planning. In IEEE International Conference on Robotics and Automation (Vol. 2, pp. 995–1001).
go back to reference Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2015). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 1–27. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., et al. (2015). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 1–27.
go back to reference Kuindersma, S., Permenter, F., Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2589–2594). IEEE. Kuindersma, S., Permenter, F., Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2589–2594). IEEE.
go back to reference Marton, Z.-C., Pangercic, D., Rusu, R. B., Holzbach, A., & Beetz, M. (2010). Hierarchical object geometric categorization and appearance classification for mobile manipulation. In 2010 10th IEEE-RAS International Conference on Humanoid Robots (pp. 365–370). IEEE. Marton, Z.-C., Pangercic, D., Rusu, R. B., Holzbach, A., & Beetz, M. (2010). Hierarchical object geometric categorization and appearance classification for mobile manipulation. In 2010 10th IEEE-RAS International Conference on Humanoid Robots (pp. 365–370). IEEE.
go back to reference Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., et al. (2007). Computer vision on mars. International Journal of Computer Vision, 75(1), 67–92. Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., et al. (2007). Computer vision on mars. International Journal of Computer Vision, 75(1), 67–92.
go back to reference Pang, G., Qiu, R., Huang, J., You, S., & Neumann, U. (2015). Automatic 3d industrial point cloud modeling and recognition. In 2015 14th IAPR International Conference on Machine Vision Applications (MVA) (pp. 22–25). IEEE. Pang, G., Qiu, R., Huang, J., You, S., & Neumann, U. (2015). Automatic 3d industrial point cloud modeling and recognition. In 2015 14th IAPR International Conference on Machine Vision Applications (MVA) (pp. 22–25). IEEE.
go back to reference Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. (2009). Chomp: Gradient optimization techniques for efficient motion planning. In IEEE International Conference on Robotics and Automation, ICRA’09 (pp. 489–494). IEEE. Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. (2009). Chomp: Gradient optimization techniques for efficient motion planning. In IEEE International Conference on Robotics and Automation, ICRA’09 (pp. 489–494). IEEE.
go back to reference Reed, C. M., & Durlach, N. I. (1998). Note on information transfer rates in human communication. Presence: Teleoperators and Virtual Environments, 7(5), 509–518. Reed, C. M., & Durlach, N. I. (1998). Note on information transfer rates in human communication. Presence: Teleoperators and Virtual Environments, 7(5), 509–518.
go back to reference Schenker, P. S., Huntsberger, T. L., Pirjanian, P., Baumgartner, E. T., Aghazarian, H., Trebi-Ollennu, A., et al. (2001). Robotic automation for space: Planetary surface exploration, terrain-adaptive mobility, and multirobot cooperative tasks. In Intelligent Systems and Advanced Manufacturing (pp. 12–28). International Society for Optics and Photonics. Schenker, P. S., Huntsberger, T. L., Pirjanian, P., Baumgartner, E. T., Aghazarian, H., Trebi-Ollennu, A., et al. (2001). Robotic automation for space: Planetary surface exploration, terrain-adaptive mobility, and multirobot cooperative tasks. In Intelligent Systems and Advanced Manufacturing (pp. 12–28). International Society for Optics and Photonics.
go back to reference Shekels, M., Carpenter, K., & Kennedy, B. (2016). Cam-Hand: A robust gripper design for manipulation in positive and negative spaces. Manuscript in Preparation. Shekels, M., Carpenter, K., & Kennedy, B. (2016). Cam-Hand: A robust gripper design for manipulation in positive and negative spaces. Manuscript in Preparation.
go back to reference Steder, B., Grisetti, G., Van Loock, M., & Burgard, W. (2009). Robust on-line model-based object detection from range images. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4739–4744). IEEE. Steder, B., Grisetti, G., Van Loock, M., & Burgard, W. (2009). Robust on-line model-based object detection from range images. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4739–4744). IEEE.
go back to reference Stentz, A., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 32(2), 209–228. Stentz, A., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics, 32(2), 209–228.
go back to reference Tedrake, R., Fallon, M., Karumanchi, S., Kuindersma, S., Antone, M., Schneider, T., et al. (2014). A summary of team mits approach to the virtual robotics challenge. In IEEE International Conference on Robotics and Automation. Tedrake, R., Fallon, M., Karumanchi, S., Kuindersma, S., Antone, M., Schneider, T., et al. (2014). A summary of team mits approach to the virtual robotics challenge. In IEEE International Conference on Robotics and Automation.
go back to reference Thrun, S., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9), 661–692. Thrun, S., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9), 661–692.
go back to reference Urmson, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425–466. Urmson, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425–466.
go back to reference Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.
go back to reference Zucker, M., Jun, Y., Killen, B., Kim, T.-G., & Oh, P. (2013). Continuous trajectory optimization for autonomous humanoid door opening. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–5). IEEE. Zucker, M., Jun, Y., Killen, B., Kim, T.-G., & Oh, P. (2013). Continuous trajectory optimization for autonomous humanoid door opening. In IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (pp. 1–5). IEEE.
Metadata
Title
Team RoboSimian: Semi-autonomous Mobile Manipulation at the 2015 DARPA Robotics Challenge Finals
Authors
Sisir Karumanchi
Kyle Edelberg
Ian Baldwin
Jeremy Nash
Brian Satzinger
Jason Reid
Charles Bergh
Chelsea Lau
John Leichty
Kalind Carpenter
Matthew Shekels
Matthew Gildner
David Newill-Smith
Jason Carlton
John Koehler
Tatyana Dobreva
Matthew Frost
Paul Hebert
James Borders
Jeremy Ma
Bertrand Douillard
Krishna Shankar
Katie Byl
Joel Burdick
Paul Backes
Brett Kennedy
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-74666-1_6