Skip to main content
Top

2020 | OriginalPaper | Chapter

Temperature Field Analysis in Grinding

Authors : Natalia Lishchenko, Vasily Larshin

Published in: Advances in Design, Simulation and Manufacturing II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper is devoted to solving an important scientific problem of determining the profile grinding temperature based on the choice of a not complex but at the same time adequate solution from the available analytical ones. The initial prerequisite for the paper developing concept is that of a moving heat source. In engineering applications, the moving heat source is often represented in the form of a moving contact zone between the grinding wheel and the workpiece surface. The source forms around itself a three-, two- or one-dimensional temperature field in the Cartesian coordinate system with (three-dimensional) and without (two- or one-dimensional) taking into account the influence of the source length in the direction, which is perpendicular to the direction of the source moving, respectively. There is another possibility to simplify the determination of grinding temperature by choosing a one-dimensional solution of the differential equation of heat conduction in which the moving heat source is absent and replaced by the time of action of an unmoving heat source. This time is equal to the ratio of the contact length (in the direction of moving) to the velocity of its movement. Due to the high speeds of the discontinuous profile grinding process, the replacement of the moving source with the unmoving (stationary) one often does not affect the accuracy of determining the profile grinding temperature on the surface and in a thin surface layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Larshin, V., Lishchenko, N.: Adaptive profile gear grinding boosts productivity of this operation on the CNC machine tools. Lect. Notes Mech. Eng. F2, 79–88 (2019)CrossRef Larshin, V., Lishchenko, N.: Adaptive profile gear grinding boosts productivity of this operation on the CNC machine tools. Lect. Notes Mech. Eng. F2, 79–88 (2019)CrossRef
2.
go back to reference Larshin, V., Lishchenko, N.: Gear grinding system adapting to higher CNC grinder throughput. In: MATEC Web of Conferences, vol. 226, issue 04033, pp. 1–6 (2018) Larshin, V., Lishchenko, N.: Gear grinding system adapting to higher CNC grinder throughput. In: MATEC Web of Conferences, vol. 226, issue 04033, pp. 1–6 (2018)
3.
go back to reference Larshin, V.P., Kovalchuk, E.N., Yakimov, A.V.: Application of solutions of thermophysical problems to the calculation of the temperature and depth of the defective layer during grinding. In: Interuniversity Collection of Scientific Works, Perm, pp. 9–16 (1986) Larshin, V.P., Kovalchuk, E.N., Yakimov, A.V.: Application of solutions of thermophysical problems to the calculation of the temperature and depth of the defective layer during grinding. In: Interuniversity Collection of Scientific Works, Perm, pp. 9–16 (1986)
4.
go back to reference Jin, T., Yi, J., Peng, S.: Determination of burn thresholds of precision gears in form grinding based on complex thermal modelling and Barkhausen noise measurements. Int. J. Adv. Manuf. Technol. 88(1–4), 789–800 (2017)CrossRef Jin, T., Yi, J., Peng, S.: Determination of burn thresholds of precision gears in form grinding based on complex thermal modelling and Barkhausen noise measurements. Int. J. Adv. Manuf. Technol. 88(1–4), 789–800 (2017)CrossRef
5.
go back to reference Jin, T., Yi, J., Li, P.: Temperature distributions in form grinding of involute gears. Int. J. Adv. Manuf. Technol. 88, 2609–2620 (2017)CrossRef Jin, T., Yi, J., Li, P.: Temperature distributions in form grinding of involute gears. Int. J. Adv. Manuf. Technol. 88, 2609–2620 (2017)CrossRef
6.
go back to reference Deivanathan, R., Vijayaraghavan, L.: Theoretical analysis of thermal profile and heat transfer in grinding. Int. J. Mech. Mater. Eng. (IJMME) 8(1), 21–31 (2013) Deivanathan, R., Vijayaraghavan, L.: Theoretical analysis of thermal profile and heat transfer in grinding. Int. J. Mech. Mater. Eng. (IJMME) 8(1), 21–31 (2013)
7.
go back to reference González-Santander, J.L.: Maximum temperature in dry surface grinding for high Peclet number and arbitrary heat flux profile. Math. Probl. Eng. 2016, 1–9 (2016)MathSciNet González-Santander, J.L.: Maximum temperature in dry surface grinding for high Peclet number and arbitrary heat flux profile. Math. Probl. Eng. 2016, 1–9 (2016)MathSciNet
8.
go back to reference Malkin, S., Guo, C.: Thermal analysis of grinding. Ann. CIRP 56, 760–782 (2007)CrossRef Malkin, S., Guo, C.: Thermal analysis of grinding. Ann. CIRP 56, 760–782 (2007)CrossRef
9.
go back to reference Guo, C., Malkin, S.: Analysis of transient temperatures in grinding. J. Eng. Ind. 117, 571–577 (1995)CrossRef Guo, C., Malkin, S.: Analysis of transient temperatures in grinding. J. Eng. Ind. 117, 571–577 (1995)CrossRef
10.
go back to reference Li, H.N., Axinte, D.A.: On a stochastically grain-discretised model for 2D/3D temperature mapping prediction in grinding. Int. J. Mach. Tools Manuf. 1–27 (2017) Li, H.N., Axinte, D.A.: On a stochastically grain-discretised model for 2D/3D temperature mapping prediction in grinding. Int. J. Mach. Tools Manuf. 1–27 (2017)
11.
go back to reference Tadeu, A., Simoes, N.: Three-dimensional fundamental solutions for transient heat transfer by conduction in an unbounded medium, half-space, slab and layered media. Eng. Anal. Boundary Elem. 30, 338–349 (2006)CrossRef Tadeu, A., Simoes, N.: Three-dimensional fundamental solutions for transient heat transfer by conduction in an unbounded medium, half-space, slab and layered media. Eng. Anal. Boundary Elem. 30, 338–349 (2006)CrossRef
12.
go back to reference Jaeger, J.C.: Moving sources of heat and temperature at sliding contact. Proc. R. Soc. NSW 76, 203–224 (1942) Jaeger, J.C.: Moving sources of heat and temperature at sliding contact. Proc. R. Soc. NSW 76, 203–224 (1942)
13.
go back to reference Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959) Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)
14.
go back to reference Sipaylov, V.A.: Thermal Processes During Grinding and Surface Quality Control. Mashinostroenie, Moskva (1978) Sipaylov, V.A.: Thermal Processes During Grinding and Surface Quality Control. Mashinostroenie, Moskva (1978)
15.
go back to reference Tahvilian, A.M., Champliaud, H., Liu, Z., Hazel, B.: Study of workpiece temperature distribution in the contact zone during robotic grinding process using finite element analysis. In: 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Procedia. Procedia CIRP 12, pp. 205–210 (2013) Tahvilian, A.M., Champliaud, H., Liu, Z., Hazel, B.: Study of workpiece temperature distribution in the contact zone during robotic grinding process using finite element analysis. In: 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Procedia. Procedia CIRP 12, pp. 205–210 (2013)
16.
go back to reference Yadav, R.K.: Analysis of grinding process by the use of finite element methods. Elk Asia Pac. J. Manuf. Sci. Eng. 1(1) (2014) Yadav, R.K.: Analysis of grinding process by the use of finite element methods. Elk Asia Pac. J. Manuf. Sci. Eng. 1(1) (2014)
17.
go back to reference Linke, B., Duscha, M., Vu, A.T., Klocke, F.: FEM-based simulation of temperature in speed stroke grinding with 3D transient moving heat sources. Adv. Mater. Res. 223, 733–742 (2011)CrossRef Linke, B., Duscha, M., Vu, A.T., Klocke, F.: FEM-based simulation of temperature in speed stroke grinding with 3D transient moving heat sources. Adv. Mater. Res. 223, 733–742 (2011)CrossRef
18.
go back to reference Mahdi, M., Zhang, L.: The finite element thermal analysis of grinding processes by Adina. Comput. Struct. 56(2/3), 313–320 (1995)CrossRef Mahdi, M., Zhang, L.: The finite element thermal analysis of grinding processes by Adina. Comput. Struct. 56(2/3), 313–320 (1995)CrossRef
19.
go back to reference Golgels, C., Schlattmeier, H., Klocke, F.: Optimization of the gear profile grinding process utilizing an analogy process. Gear Technol. 34–40 (2006) (Nov/Dec) Golgels, C., Schlattmeier, H., Klocke, F.: Optimization of the gear profile grinding process utilizing an analogy process. Gear Technol. 34–40 (2006) (Nov/Dec)
20.
go back to reference Fergani, O., Shao, Y., Lazoglu, I., Liang, S.Y.: Temperature effects on grinding residual stress. In: 6th CIRP International Conference on High Performance Cutting, HPC2014. Procedia CIRP 14, pp. 2–6 (2014) Fergani, O., Shao, Y., Lazoglu, I., Liang, S.Y.: Temperature effects on grinding residual stress. In: 6th CIRP International Conference on High Performance Cutting, HPC2014. Procedia CIRP 14, pp. 2–6 (2014)
21.
go back to reference Engineer, F., Guo, C., Malkin, S.: Experimental measurement of fluid flow through the grinding zone. J. Eng. Ind. 114, 61–66 (1992)CrossRef Engineer, F., Guo, C., Malkin, S.: Experimental measurement of fluid flow through the grinding zone. J. Eng. Ind. 114, 61–66 (1992)CrossRef
22.
go back to reference Heinzel, C., Sölter, J., Jermolajev, S., Kolkwitz, B., Brinksmeier, E.: A versatile method to determine thermal limits in grinding. In: 2nd CIRP Conference on Surface Integrity (CSI). Procedia CIRP 13, pp. 131–136 (2014) Heinzel, C., Sölter, J., Jermolajev, S., Kolkwitz, B., Brinksmeier, E.: A versatile method to determine thermal limits in grinding. In: 2nd CIRP Conference on Surface Integrity (CSI). Procedia CIRP 13, pp. 131–136 (2014)
23.
go back to reference Li, B.H., Zhu, D.H., Zhou, Z.X., Zhang, Q., Yuan, Y.C.: Research on workpiece surface temperature and surface quality in high-speed cylindrical grinding and its inspiration. Adv. Mater. Res. 325, 19–27 (2011)CrossRef Li, B.H., Zhu, D.H., Zhou, Z.X., Zhang, Q., Yuan, Y.C.: Research on workpiece surface temperature and surface quality in high-speed cylindrical grinding and its inspiration. Adv. Mater. Res. 325, 19–27 (2011)CrossRef
24.
go back to reference Chen, X., Öpöz, T.: Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Prod. Manuf. Res. Open Access J. 4(1), 190–208 (2016) Chen, X., Öpöz, T.: Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Prod. Manuf. Res. Open Access J. 4(1), 190–208 (2016)
25.
go back to reference Jermolajev, S., Epp, J., Heinzel, C., Brinksmeier, E.: Material modifications caused by thermal and mechanical load during grinding. In: 3rd CIRP Conference on Surface Integrity (CIRP CSI). Procedia CIRP 45, pp. 43–46 (2016) Jermolajev, S., Epp, J., Heinzel, C., Brinksmeier, E.: Material modifications caused by thermal and mechanical load during grinding. In: 3rd CIRP Conference on Surface Integrity (CIRP CSI). Procedia CIRP 45, pp. 43–46 (2016)
26.
go back to reference Jermolajev, S., Brinksmeier, E., Heinzel, C.: Surface layer modification charts for gear grinding. CIRP Ann. Manuf. Technol. 1–4 (2018) Jermolajev, S., Brinksmeier, E., Heinzel, C.: Surface layer modification charts for gear grinding. CIRP Ann. Manuf. Technol. 1–4 (2018)
27.
go back to reference Larshin, V., Lishchenko, N.: Research methodology for grinding systems. Russ. Eng. Res. 38(9), 712–713 (2018)CrossRef Larshin, V., Lishchenko, N.: Research methodology for grinding systems. Russ. Eng. Res. 38(9), 712–713 (2018)CrossRef
28.
go back to reference Lishchenko, N.V., Larshin, V.P., Basharov, R.R.: Diagnostics of drilling in numerically controlled machine tools. Russ. Eng. Res. 36(1), 77–80 (2016)CrossRef Lishchenko, N.V., Larshin, V.P., Basharov, R.R.: Diagnostics of drilling in numerically controlled machine tools. Russ. Eng. Res. 36(1), 77–80 (2016)CrossRef
Metadata
Title
Temperature Field Analysis in Grinding
Authors
Natalia Lishchenko
Vasily Larshin
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22365-6_20

Premium Partners