Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 15/2018

04-06-2018

Temperature stable microwave dielectric ceramics in Li2ZnTi3O8–based composite for LTCC applications

Authors: Haishen Ren, Haiyi Peng, Tianyi Xie, Liang Hao, Mingzhao Dang, Xie Meng, Shaohu Jiang, Yi Zhang, Huixing Lin, Lan Luo

Published in: Journal of Materials Science: Materials in Electronics | Issue 15/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A temperature stable low temperature co-fired ceramic (LTCC) was fabricated by the powder mixture of Li2ZnTi3O8 ceramic, TiO2 τf-tailoring dopant and B2O3–La2O3–MgO–TiO2 (BLMT) glass sintering aid, and the sintering behavior, activation energy, phase composition, microstructure and microwave dielectric properties of the composite were investigated in the composition range (wt%) of 5 BLMT–(95-x) Li2ZnTi3O8−X TiO2 (x = 0, 1, 2, 3, 4 and 5). The sintering behavior results showed that all composites could be well sintered at 910 °C for 2 h through liquid-phase sintering. The activation energy of Li2ZnTi3O8 ceramic was calculated to be 520.9 ± 40.46 kJ/mol, while 5BLMT–93Li2ZnTi3O8–2TiO2 (in wt%) composite was reduced to 330.98 ± 47.34 kJ/mol. The XRD results showed that Li2ZnTi3O8 and TiO2 phase stably existed in all sample and a new phase LaBO3 was crystallized from BLMT glass during sintering process. As x increases, the rutile TiO2 phase increased in composite, which could adjust the temperature coefficient of resonant frequency (τf) to near-zero owing to the opposite τf value to other phases. And simultaneously dielectric constant (εr) demonstrated gradually increase, whereas the quality factor (Q × f) decreased gradually. The composite with x = 2 had an optimal microwave dielectric properties with εr = 25.3, Q × f = 32,800 GHz, and τf = − 0.54 ppm/°C. The corresponding fitting equations of εr, Q × f and τf on the x value were obtained by the Origin software, indicating that the dielectric properties of the composite could be precisely controlled by varying the content of TiO2. In addition, the good chemical compatibility of this material with Ag electrode made it as a potential candidate for LTCC technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, New York, 2005) Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, New York, 2005)
2.
go back to reference M.T. Sebastian, H. Wang, H. Jantunen. Curr. Opin. Solid. State Mater. 20, 151–170 (2016)CrossRef M.T. Sebastian, H. Wang, H. Jantunen. Curr. Opin. Solid. State Mater. 20, 151–170 (2016)CrossRef
3.
go back to reference M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRef M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRef
4.
6.
go back to reference X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Ceram. Int. 39, 9829–9833 (2013)CrossRef X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Ceram. Int. 39, 9829–9833 (2013)CrossRef
7.
go back to reference X.P. Lu, Y. Zheng, Z.W. Dong, P. Cheng, R. Lin, Ceram. Int. 40, 7087–7092 (2014)CrossRef X.P. Lu, Y. Zheng, Z.W. Dong, P. Cheng, R. Lin, Ceram. Int. 40, 7087–7092 (2014)CrossRef
8.
go back to reference Y.X. Li, H. Li, B. Tang, Z.J. Qin, H.T. Chen, S.R. Zhang, J. Mater. Sci.: Mater. Electron. 26, 1181–1185 (2015) Y.X. Li, H. Li, B. Tang, Z.J. Qin, H.T. Chen, S.R. Zhang, J. Mater. Sci.: Mater. Electron. 26, 1181–1185 (2015)
9.
10.
go back to reference H.S. Ren, X.G. Yao, T.Y. Xie, M.Z. Dang, H.Y. Peng, S.H. Jiang, X.Y. Zhao, H.X. Lin, L. Luo, J. Mater. Sci.: Mater. Electron. 28, 18646–18655 (2017) H.S. Ren, X.G. Yao, T.Y. Xie, M.Z. Dang, H.Y. Peng, S.H. Jiang, X.Y. Zhao, H.X. Lin, L. Luo, J. Mater. Sci.: Mater. Electron. 28, 18646–18655 (2017)
11.
go back to reference H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H. Tang, H.Y. Peng, H.X. Lin, L. Luo, J. Alloy. Compd. 740, 1188–1196 (2018)CrossRef H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H. Tang, H.Y. Peng, H.X. Lin, L. Luo, J. Alloy. Compd. 740, 1188–1196 (2018)CrossRef
12.
go back to reference H.S. Ren, T.Y. Xie, M.Z. Dang, S.H. Jiang, H.X. Lin, L. Luo, Ceram. Int. 43, 12863–12869 (2017)CrossRef H.S. Ren, T.Y. Xie, M.Z. Dang, S.H. Jiang, H.X. Lin, L. Luo, Ceram. Int. 43, 12863–12869 (2017)CrossRef
13.
go back to reference V.B. John, Introduction to Engineering Materials, 3rd edn. (Macmillan, Houndmills, 1992)CrossRef V.B. John, Introduction to Engineering Materials, 3rd edn. (Macmillan, Houndmills, 1992)CrossRef
14.
go back to reference V.K. Sing, J. Am. Ceram. Soc. 64, 133–136 (1981) V.K. Sing, J. Am. Ceram. Soc. 64, 133–136 (1981)
15.
go back to reference Y.M. Lai, C.Y. Hong, L.C. Jin, X.L. Tang, H.W. Zhang, X. Huang, J. Li, H. Su, Ceram. Int. 43, 16167–16173 (2017)CrossRef Y.M. Lai, C.Y. Hong, L.C. Jin, X.L. Tang, H.W. Zhang, X. Huang, J. Li, H. Su, Ceram. Int. 43, 16167–16173 (2017)CrossRef
16.
18.
go back to reference X.Y. Chen, S.X. Bai, M. Li, W.J. Zhang., J. Eur. Ceram. Soc. 33, 3001–3006 (2013)CrossRef X.Y. Chen, S.X. Bai, M. Li, W.J. Zhang., J. Eur. Ceram. Soc. 33, 3001–3006 (2013)CrossRef
19.
go back to reference Y.X. Li, J.S. Li, B. Tang, S.R. Zhang, H. Li, Z.J. Qin, H.T. Chen, H. Yang, H. Tu, J. Mater. Sci.: Mater. Electron. 25, 2780–2785 (2014) Y.X. Li, J.S. Li, B. Tang, S.R. Zhang, H. Li, Z.J. Qin, H.T. Chen, H. Yang, H. Tu, J. Mater. Sci.: Mater. Electron. 25, 2780–2785 (2014)
20.
go back to reference G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRef
21.
go back to reference M. He, H.W. Zhang, J. Mater. Sci.: Mater. Electron. 24, 3303–3308 (2013) M. He, H.W. Zhang, J. Mater. Sci.: Mater. Electron. 24, 3303–3308 (2013)
22.
go back to reference Y.X. Li, Z.J. Qin, B. Tang, S.R. Zhang, G. Chang, H. Li, H.T. Chen, H. Yang, J.S. Li, J. Electron. Mater. 44, 281–286 (2015)CrossRef Y.X. Li, Z.J. Qin, B. Tang, S.R. Zhang, G. Chang, H. Li, H.T. Chen, H. Yang, J.S. Li, J. Electron. Mater. 44, 281–286 (2015)CrossRef
23.
go back to reference M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, C.L. Yuan, J. Mater. Sci.: Mater. Electron. 23, 1722–1727 (2012) M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, C.L. Yuan, J. Mater. Sci.: Mater. Electron. 23, 1722–1727 (2012)
24.
25.
go back to reference K. Zhang, L. Yuan, Y.P. Fu, C. Yuan, W. Li., J. Mater. Sci.: Mater. Electron. 26, 6526–6531 (2015) K. Zhang, L. Yuan, Y.P. Fu, C. Yuan, W. Li., J. Mater. Sci.: Mater. Electron. 26, 6526–6531 (2015)
Metadata
Title
Temperature stable microwave dielectric ceramics in Li2ZnTi3O8–based composite for LTCC applications
Authors
Haishen Ren
Haiyi Peng
Tianyi Xie
Liang Hao
Mingzhao Dang
Xie Meng
Shaohu Jiang
Yi Zhang
Huixing Lin
Lan Luo
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 15/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9418-0

Other articles of this Issue 15/2018

Journal of Materials Science: Materials in Electronics 15/2018 Go to the issue