Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 10/2018

02-07-2018

Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions

Authors: X. Guo, Y. Liu, G. J. Weng, L. L. Zhu

Published in: Metallurgical and Materials Transactions A | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotwinned (NT) regions can compensate the lower ductility of nanograined (NG) matrix so that NG metals with NT regions can achieve high strength and modest ductility. Main factors affecting the strength and ductility of the NG metals with NT regions have not been systematically and numerically investigated. Based on the strain gradient plasticity and Johnson–Cook failure criterion, computer simulations are carried out to clarify the effects of twin spacing together with shape and distribution of NT regions on their strength and ductility. Our calculations indicate that these attributes have significant effects on the overall ductility. In particular, it is discovered that a critical twin spacing marks the reversal of the overall ductility, that is, the overall ductility decreases and then increases with the continuous increase of twin spacing. Compared with the circular NT regions, the square and oblique square ones are found to provide higher overall strength and ductility. For the circular and oblique square NT regions, array arrangement tends to perform better in strengthening and toughening, while for the square NT regions, staggered arrangement is advisable. We have also uncovered three distinct failure modes, including fracture of matrix, fracture of NT regions, and interface debonding. Furthermore, fracture of NT regions can enhance the overall ductility and lead to the reversal of the overall ductility. It is believed that this study has provided significant insights into the roles of twin spacing together with shape and distribution of NT regions on the overall strength and ductility of this novel class of metals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.CrossRef D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.CrossRef
4.
5.
go back to reference L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRef
6.
go back to reference Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Scripta Mater., 2005, vol. 52, pp. 989–94.CrossRef Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Scripta Mater., 2005, vol. 52, pp. 989–94.CrossRef
8.
9.
go back to reference IA OvidKo and AG Sheinerman (2016) Rev. Adv. Mater. Sci. 44: 1–25. IA OvidKo and AG Sheinerman (2016) Rev. Adv. Mater. Sci. 44: 1–25.
10.
go back to reference D. Zhu, H. Zhang, and D.Y. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4207–17.CrossRef D. Zhu, H. Zhang, and D.Y. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4207–17.CrossRef
11.
go back to reference L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Mat. Sci. Eng. A–Struct., 2014, vol. 606, pp. 334–45.CrossRef L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Mat. Sci. Eng. A–Struct., 2014, vol. 606, pp. 334–45.CrossRef
12.
go back to reference H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46, pp.4078–85.CrossRef H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46, pp.4078–85.CrossRef
13.
go back to reference A.Y. Chen, J.B. Liu, H.T. Wang, J. Lu, and Y.M. Wang: Mat. Sci. Eng. A–Struct., 2016, vol. 667, pp. 179–88.CrossRef A.Y. Chen, J.B. Liu, H.T. Wang, J. Lu, and Y.M. Wang: Mat. Sci. Eng. A–Struct., 2016, vol. 667, pp. 179–88.CrossRef
14.
15.
16.
go back to reference G.H. Xiao, N.R. Tao, and K. Lu: Mat. Sci. Eng. A–Struct., 2009, vol. 513, pp. 13–21.CrossRef G.H. Xiao, N.R. Tao, and K. Lu: Mat. Sci. Eng. A–Struct., 2009, vol. 513, pp. 13–21.CrossRef
17.
go back to reference B.Y.C. Wu, P.J. Ferreira, and C.A. Schuh: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1927–36.CrossRef B.Y.C. Wu, P.J. Ferreira, and C.A. Schuh: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1927–36.CrossRef
18.
19.
go back to reference L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607–10.CrossRef L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607–10.CrossRef
20.
go back to reference D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: MRS Bull., 2016, vol. 41, pp. 286–91.CrossRef D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: MRS Bull., 2016, vol. 41, pp. 286–91.CrossRef
21.
22.
go back to reference X. Zhang, H. Wang, X.H. Chen, R.G. Hoagland, A. Misra: Appl. Phys. Lett., 2006, vol. 88, p. 173116.CrossRef X. Zhang, H. Wang, X.H. Chen, R.G. Hoagland, A. Misra: Appl. Phys. Lett., 2006, vol. 88, p. 173116.CrossRef
23.
go back to reference Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2949–53.CrossRef Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2949–53.CrossRef
24.
go back to reference C. Ye, S. Suslov, D. Lin, Y.L. Liao, and G.J. Cheng: J. Appl. Phys., 2014, vol. 115, p. 213519.CrossRef C. Ye, S. Suslov, D. Lin, Y.L. Liao, and G.J. Cheng: J. Appl. Phys., 2014, vol. 115, p. 213519.CrossRef
25.
26.
27.
go back to reference A. Jerusalem, M. Dao, S. Suresh, and R. Radovitzky: Acta Mater., 2008, vol. 56, pp. 4647–57.CrossRef A. Jerusalem, M. Dao, S. Suresh, and R. Radovitzky: Acta Mater., 2008, vol. 56, pp. 4647–57.CrossRef
28.
go back to reference X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.CrossRef X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.CrossRef
29.
go back to reference Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter: Scripta Mater., 2006, vol. 54, pp. 1163–68.CrossRef Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter: Scripta Mater., 2006, vol. 54, pp. 1163–68.CrossRef
30.
go back to reference Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126–35.CrossRef Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126–35.CrossRef
31.
go back to reference A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Acta Mater., 2011, vol. 59, pp. 2437–46.CrossRef A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Acta Mater., 2011, vol. 59, pp. 2437–46.CrossRef
32.
33.
go back to reference E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Acta Mater., 2009, vol. 57, pp. 6215–25.CrossRef E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Acta Mater., 2009, vol. 57, pp. 6215–25.CrossRef
34.
go back to reference M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRef M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRef
35.
go back to reference L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu: Acta Mater., 2011, vol. 59, pp. 5544–57.CrossRef L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu: Acta Mater., 2011, vol. 59, pp. 5544–57.CrossRef
36.
go back to reference F.P. Yuan, L. Chen, P. Jiang, and X.L. Wu: J. Appl. Phys., 2014, vol. 115, p. 063509.CrossRef F.P. Yuan, L. Chen, P. Jiang, and X.L. Wu: J. Appl. Phys., 2014, vol. 115, p. 063509.CrossRef
37.
38.
go back to reference X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877–80.CrossRef X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877–80.CrossRef
39.
go back to reference X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, and H.J. Gao: MRS Bull., 2016, vol. 41, pp. 298–304.CrossRef X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, and H.J. Gao: MRS Bull., 2016, vol. 41, pp. 298–304.CrossRef
40.
go back to reference H.F. Zhou, S.X. Qu, and W. Yang: Model. Simul. Mater. Sc., 2010, vol. 18, p. 065002.CrossRef H.F. Zhou, S.X. Qu, and W. Yang: Model. Simul. Mater. Sc., 2010, vol. 18, p. 065002.CrossRef
41.
go back to reference Z. Zeng, X.Y. Li, L. Lu, and T. Zhu: Acta Mater., 2015, vol. 98, pp. 313–17.CrossRef Z. Zeng, X.Y. Li, L. Lu, and T. Zhu: Acta Mater., 2015, vol. 98, pp. 313–17.CrossRef
42.
go back to reference S.W. Kim, X.Y. Li, H.J. Gao, and S. Kumar: Acta Mater., 2012, vol. 60, pp. 2959–72.CrossRef S.W. Kim, X.Y. Li, H.J. Gao, and S. Kumar: Acta Mater., 2012, vol. 60, pp. 2959–72.CrossRef
43.
go back to reference J.J. Li, Y. Ni, A.K. Soh, and X.L. Wu: Mater. Res. Lett., 2015, vol. 3, pp. 190–96.CrossRef J.J. Li, Y. Ni, A.K. Soh, and X.L. Wu: Mater. Res. Lett., 2015, vol. 3, pp. 190–96.CrossRef
44.
45.
46.
go back to reference X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Model. Simul. Mater. Sc., 2014, vol. 22, p. 075014.CrossRef X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Model. Simul. Mater. Sc., 2014, vol. 22, p. 075014.CrossRef
47.
48.
go back to reference Dassault Providence RI: ABAQUS Example Problems Manual, Theory Manual, and User’s Manual, version 6.10, 2013. Dassault Providence RI: ABAQUS Example Problems Manual, Theory Manual, and User’s Manual, version 6.10, 2013.
49.
50.
go back to reference Y. Huang, S. Qu, K.C. Hwang, M. Li, and H.J. Gao: Int. J. Plasticity, 2004, vol. 20, pp. 753–82.CrossRef Y. Huang, S. Qu, K.C. Hwang, M. Li, and H.J. Gao: Int. J. Plasticity, 2004, vol. 20, pp. 753–82.CrossRef
51.
go back to reference G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of the 7th Int. Symposium on Ballistics, 1983, The Hague, The Netherlands. G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of the 7th Int. Symposium on Ballistics, 1983, The Hague, The Netherlands.
52.
53.
go back to reference X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Mat. Sci. Eng. A, 2014, vol. 618, pp. 479–89.CrossRef X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Mat. Sci. Eng. A, 2014, vol. 618, pp. 479–89.CrossRef
54.
go back to reference Q.D. Ouyang, X. Guo, X.Q. Feng: Mat. Sci. Eng. A–Struct., 2016, vol. 677, pp. 76–88.CrossRef Q.D. Ouyang, X. Guo, X.Q. Feng: Mat. Sci. Eng. A–Struct., 2016, vol. 677, pp. 76–88.CrossRef
55.
go back to reference G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, p. V014T11A004. G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, p. V014T11A004.
56.
go back to reference G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: Int. J. Comput. Meth. Eng. Sci. Mech., 2018, vol. 19, pp. 1–10.CrossRef G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: Int. J. Comput. Meth. Eng. Sci. Mech., 2018, vol. 19, pp. 1–10.CrossRef
57.
go back to reference X. Guo, Q.D. Ouyang, G.J. Weng, and L.L. Zhu: Mat. Sci. Eng. A-Struct., 2016, vol. 657, pp. 234–43.CrossRef X. Guo, Q.D. Ouyang, G.J. Weng, and L.L. Zhu: Mat. Sci. Eng. A-Struct., 2016, vol. 657, pp. 234–43.CrossRef
58.
go back to reference R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mat. Sci. Eng. A–Struct., 2007, vol. 463, pp. 14–21.CrossRef R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mat. Sci. Eng. A–Struct., 2007, vol. 463, pp. 14–21.CrossRef
59.
go back to reference Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.CrossRef Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.CrossRef
Metadata
Title
Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions
Authors
X. Guo
Y. Liu
G. J. Weng
L. L. Zhu
Publication date
02-07-2018
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 10/2018
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4773-2

Other articles of this Issue 10/2018

Metallurgical and Materials Transactions A 10/2018 Go to the issue

Premium Partners