Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2016

13-01-2016

Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

Authors: P. Q. Dai, C. Zhang, J. C. Wen, H. C. Rao, Q. T. Wang

Published in: Journal of Materials Engineering and Performance | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29CrossRef H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29CrossRef
2.
go back to reference K.S. Kumar, H.S. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774CrossRef K.S. Kumar, H.S. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774CrossRef
3.
go back to reference H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef
4.
go back to reference H. Li and F. Ebrahimi, Tensile Behavior of a Nanocrystalline Ni-Fe Alloy, Acta Mater., 2006, 54, p 2877–2886CrossRef H. Li and F. Ebrahimi, Tensile Behavior of a Nanocrystalline Ni-Fe Alloy, Acta Mater., 2006, 54, p 2877–2886CrossRef
5.
go back to reference G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, Mechanical Behavior of a Bulk Nanocrystalline Ni-Fe Alloy, J. Alloys Compd., 2007, 434, p 298–300CrossRef G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, Mechanical Behavior of a Bulk Nanocrystalline Ni-Fe Alloy, J. Alloys Compd., 2007, 434, p 298–300CrossRef
6.
go back to reference H.A. Padilla, II, B.L. Boyce, C.C. Battaile, and S.V. Prasad, Frictional Performance and Near-Surface Evolution of Nanocrystalline Ni-Fe as Governed by Contact Stress and Sliding Velocity, Wear, 2013, 297, p 860–871CrossRef H.A. Padilla, II, B.L. Boyce, C.C. Battaile, and S.V. Prasad, Frictional Performance and Near-Surface Evolution of Nanocrystalline Ni-Fe as Governed by Contact Stress and Sliding Velocity, Wear, 2013, 297, p 860–871CrossRef
7.
go back to reference S.K. Ghosh, G.K. Dey, R.O. Dusane, and A.K. Grover, Improved Pitting Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-Cu Alloys in 3.0 wt.% NaCl Solution, J. Alloys Compd., 2006, 426, p 235–243CrossRef S.K. Ghosh, G.K. Dey, R.O. Dusane, and A.K. Grover, Improved Pitting Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-Cu Alloys in 3.0 wt.% NaCl Solution, J. Alloys Compd., 2006, 426, p 235–243CrossRef
8.
go back to reference T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27, p 1147–1158CrossRef T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27, p 1147–1158CrossRef
9.
go back to reference I. Baskaran, T.S. Sankara, and A. Stephen, Pulsed Electrodeposition of Nanocrystalline Cu-Ni Alloy Films and Evaluation of Their Characteristic Properties, Mater. Lett., 2006, 60, p 1990–1995CrossRef I. Baskaran, T.S. Sankara, and A. Stephen, Pulsed Electrodeposition of Nanocrystalline Cu-Ni Alloy Films and Evaluation of Their Characteristic Properties, Mater. Lett., 2006, 60, p 1990–1995CrossRef
10.
go back to reference S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis, Surf. Coat. Technol., 2000, 126, p 48–63CrossRef S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis, Surf. Coat. Technol., 2000, 126, p 48–63CrossRef
11.
go back to reference E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, N.S. Suri, M.D. Bar, and J.A. Sort, Comparison Between Fine-Grained and Nanocrystalline Electrodeposited Cu-Ni Films. Insights on Mechanical and Corrosion Performance, Surf. Coat. Technol., 2011, 205, p 5285–5293CrossRef E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, N.S. Suri, M.D. Bar, and J.A. Sort, Comparison Between Fine-Grained and Nanocrystalline Electrodeposited Cu-Ni Films. Insights on Mechanical and Corrosion Performance, Surf. Coat. Technol., 2011, 205, p 5285–5293CrossRef
12.
go back to reference E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Men, M. Estrader, S. Surinach, M.D. Bar, J. Nogu, and J. Sort, Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior, Adv. Funct. Mater., 2010, 20, p 983–991CrossRef E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Men, M. Estrader, S. Surinach, M.D. Bar, J. Nogu, and J. Sort, Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior, Adv. Funct. Mater., 2010, 20, p 983–991CrossRef
13.
go back to reference X. Shen, J. Lian, Z. Jiang, J. Zhonghao, and J. Qing, High Strength and High Ductility of Electrodeposited Nanocrystalline Ni with a Broad Grain Size Distribution, Mater. Sci. Eng. A, 2008, 487, p 410–416CrossRef X. Shen, J. Lian, Z. Jiang, J. Zhonghao, and J. Qing, High Strength and High Ductility of Electrodeposited Nanocrystalline Ni with a Broad Grain Size Distribution, Mater. Sci. Eng. A, 2008, 487, p 410–416CrossRef
14.
go back to reference S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533CrossRef S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533CrossRef
15.
go back to reference L. Qin, J. Lian, and Q. Jiang, Enhanced Ductility of High-Strength Electrodeposited Nanocrystalline Ni-Co Alloy with Fine Grain Size, J. Alloys Compd., 2010, 504, p S439–S442CrossRef L. Qin, J. Lian, and Q. Jiang, Enhanced Ductility of High-Strength Electrodeposited Nanocrystalline Ni-Co Alloy with Fine Grain Size, J. Alloys Compd., 2010, 504, p S439–S442CrossRef
16.
go back to reference K.S. Willson and J.A. Rogers, Orientation, Crystal Structure and Appearance of Nickel Deposits from a Watts Bath Containing Coumarin, J. Tech. Proc. Am. Electroplat. Soc., 1964, 51, p 92–95 K.S. Willson and J.A. Rogers, Orientation, Crystal Structure and Appearance of Nickel Deposits from a Watts Bath Containing Coumarin, J. Tech. Proc. Am. Electroplat. Soc., 1964, 51, p 92–95
17.
go back to reference W. Xu, P. Dai, and X. Wu, Effect of Stress-Induced Grain Growth During Room Temperature Tensile Deformation on Ductility in Nanocrystalline Metals, Bull. Mater. Sci., 2010, 33, p 561–568CrossRef W. Xu, P. Dai, and X. Wu, Effect of Stress-Induced Grain Growth During Room Temperature Tensile Deformation on Ductility in Nanocrystalline Metals, Bull. Mater. Sci., 2010, 33, p 561–568CrossRef
18.
go back to reference A.J. Detor and C.A. Schuh, Tailoring and Patterning the Grain Size of Nanocrystalline Alloys, Acta Mater., 2007, 55, p 371–379CrossRef A.J. Detor and C.A. Schuh, Tailoring and Patterning the Grain Size of Nanocrystalline Alloys, Acta Mater., 2007, 55, p 371–379CrossRef
19.
go back to reference H. Li and F. Ebrahimi, Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel-Iron Alloys, Mater. Sci. Eng. A, 2003, 347, p 93–101CrossRef H. Li and F. Ebrahimi, Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel-Iron Alloys, Mater. Sci. Eng. A, 2003, 347, p 93–101CrossRef
20.
go back to reference H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw, Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys, J. Mater. Sci., 2006, 41, p 7636–7642CrossRef H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw, Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys, J. Mater. Sci., 2006, 41, p 7636–7642CrossRef
21.
go back to reference K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2003, 51, p 387–405CrossRef K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2003, 51, p 387–405CrossRef
22.
go back to reference M. Prasad and A.H. Chokshi, Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel, Scripta Mater., 2012, 67, p 133–136CrossRef M. Prasad and A.H. Chokshi, Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel, Scripta Mater., 2012, 67, p 133–136CrossRef
23.
go back to reference J. Mu, X. Li, L. Zhao, Z. Jiang, J. Lian, and Q. Jiang, Stable Ductility of an Electrodeposited Nanocrystalline Ni-20wt. % Fe Alloy in Tensile Plastic Deformation, J. Alloys Compd., 2013, 553, p 99–105CrossRef J. Mu, X. Li, L. Zhao, Z. Jiang, J. Lian, and Q. Jiang, Stable Ductility of an Electrodeposited Nanocrystalline Ni-20wt. % Fe Alloy in Tensile Plastic Deformation, J. Alloys Compd., 2013, 553, p 99–105CrossRef
24.
go back to reference F.T. Dalla, H.S. Van, and M. Victoria, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., 2002, 50, p 3957–3970CrossRef F.T. Dalla, H.S. Van, and M. Victoria, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., 2002, 50, p 3957–3970CrossRef
25.
go back to reference Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of Grain Growth During Severe Plastic Deformation of a Nanocrystalline Ni-Fe Alloy, Appl. Phys. Lett., 2009, 94, p p011908 Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of Grain Growth During Severe Plastic Deformation of a Nanocrystalline Ni-Fe Alloy, Appl. Phys. Lett., 2009, 94, p p011908
26.
go back to reference S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain Growth and Dislocation Density Evolution in a Nanocrystalline Ni-Fe Alloy Induced by High-Pressure Torsion, Scripta Mater., 2011, 64, p 327–330CrossRef S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain Growth and Dislocation Density Evolution in a Nanocrystalline Ni-Fe Alloy Induced by High-Pressure Torsion, Scripta Mater., 2011, 64, p 327–330CrossRef
27.
go back to reference D.K. Chaudhuri, D. Xie, and A.N. Lakshmanan, The Influence of Stacking Fault Energy on the Wear Resistance of Nickel Base Alloys, Wear, 1997, 209, p 140–152CrossRef D.K. Chaudhuri, D. Xie, and A.N. Lakshmanan, The Influence of Stacking Fault Energy on the Wear Resistance of Nickel Base Alloys, Wear, 1997, 209, p 140–152CrossRef
28.
go back to reference K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764CrossRef
29.
go back to reference K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero, and Z. Horita, Influence of Dislocation-Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77CrossRef K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero, and Z. Horita, Influence of Dislocation-Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77CrossRef
30.
go back to reference Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scripta Mater., 2009, 60, p 52–55CrossRef Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scripta Mater., 2009, 60, p 52–55CrossRef
31.
go back to reference Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493, p 123–129CrossRef Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493, p 123–129CrossRef
32.
go back to reference V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation, Nat. Mater., 2003, 3, p 43–47CrossRef V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation, Nat. Mater., 2003, 3, p 43–47CrossRef
33.
go back to reference X.Y. Zhang, X.L. Wu, and A.W. Zhu, Growth of Deformation Twins in Room-Temperature Rolled Nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p p121907CrossRef X.Y. Zhang, X.L. Wu, and A.W. Zhu, Growth of Deformation Twins in Room-Temperature Rolled Nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p p121907CrossRef
34.
go back to reference H.S. Van, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3, p 399–403CrossRef H.S. Van, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3, p 399–403CrossRef
35.
go back to reference S. Yip, Nanocrystalline Metals: Mapping Plasticity, Nat. Mater., 2004, 3, p 11–12CrossRef S. Yip, Nanocrystalline Metals: Mapping Plasticity, Nat. Mater., 2004, 3, p 11–12CrossRef
36.
go back to reference R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450CrossRef R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450CrossRef
37.
go back to reference P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of Stacking Fault Energy on Strength and Ductility of Nanostructured Alloys: An Evaluation with Minimum Solution Hardening, Mater. Sci. Eng. A, 2009, 525, p 83–86CrossRef P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of Stacking Fault Energy on Strength and Ductility of Nanostructured Alloys: An Evaluation with Minimum Solution Hardening, Mater. Sci. Eng. A, 2009, 525, p 83–86CrossRef
38.
go back to reference Y.T. Zhu and X. Liao, Nanostructured Metals: Retaining Ductility, Nat. Mater., 2004, 3, p 351–352CrossRef Y.T. Zhu and X. Liao, Nanostructured Metals: Retaining Ductility, Nat. Mater., 2004, 3, p 351–352CrossRef
Metadata
Title
Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys
Authors
P. Q. Dai
C. Zhang
J. C. Wen
H. C. Rao
Q. T. Wang
Publication date
13-01-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1881-2

Other articles of this Issue 2/2016

Journal of Materials Engineering and Performance 2/2016 Go to the issue

Premium Partners