Skip to main content
Top
Published in: Cellulose 5/2019

25-01-2019 | Original Research

Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films

Authors: Takeya Unuma, Omou Kobayashi, Iffah F. A. Hamdany, Vinay Kumar, Jarkko J. Saarinen

Published in: Cellulose | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the terahertz transmission through flexible composite films that contain nanofibrillar cellulose (NFC) and different blending percentages of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The real part of terahertz complex conductivity is found to decrease with decreasing frequency for each NFC composite film and to approach a finite positive value dependent on the PEDOT:PSS blending percentage in the limit of zero frequency. Both the real and imaginary parts of complex conductivity spectra can be fitted simultaneously with an extended Drude model that describes a partially localized nature of carriers. Our spectral analysis indicates that carriers in the NFC composite become denser and also less localized as the PEDOT:PSS blending percentage is increased.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110:25462–25471CrossRefPubMed Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110:25462–25471CrossRefPubMed
go back to reference Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimova RI, Khripunov AK, Tkachenko AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRef Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimova RI, Khripunov AK, Tkachenko AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRef
go back to reference Andrianov AV, Aleshin AN, Khripunov AK, Trukhin VN (2015) Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth Met 205:201–205CrossRef Andrianov AV, Aleshin AN, Khripunov AK, Trukhin VN (2015) Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth Met 205:201–205CrossRef
go back to reference Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239CrossRefPubMed Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239CrossRefPubMed
go back to reference Carnio BN, Ahvazi B, Elezzabi AY (2016) Terahertz properties of cellulose nanocrystals and films. J Infrared Millim Terahertz Waves 37:281–288CrossRef Carnio BN, Ahvazi B, Elezzabi AY (2016) Terahertz properties of cellulose nanocrystals and films. J Infrared Millim Terahertz Waves 37:281–288CrossRef
go back to reference Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73:193311CrossRef Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73:193311CrossRef
go back to reference Cooke DG, Krebs FC, Jepsen PU (2012) Direct observation of sub-100 fs mobile charge generation in a polymer–fullerene film. Phys Rev Lett 108:056603CrossRefPubMed Cooke DG, Krebs FC, Jepsen PU (2012) Direct observation of sub-100 fs mobile charge generation in a polymer–fullerene film. Phys Rev Lett 108:056603CrossRefPubMed
go back to reference Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112:7928–7935CrossRef Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112:7928–7935CrossRef
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16:220–227CrossRef
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
go back to reference Elfwing A, Ponseca CS Jr, Ouyang L, Urbanowicz A, Krotkus A, Tu D, Forchheimer R, Inganäs O (2018) Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv Funct Mater 28:1706595CrossRef Elfwing A, Ponseca CS Jr, Ouyang L, Urbanowicz A, Krotkus A, Tu D, Forchheimer R, Inganäs O (2018) Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv Funct Mater 28:1706595CrossRef
go back to reference Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663CrossRef Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663CrossRef
go back to reference Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644–15653CrossRef Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644–15653CrossRef
go back to reference Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wagberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRef Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wagberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRef
go back to reference Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMed Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMed
go back to reference Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRefPubMedPubMedCentral Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRefPubMedPubMedCentral
go back to reference Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr Polym 127:86–93CrossRefPubMed Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr Polym 127:86–93CrossRefPubMed
go back to reference Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
go back to reference Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165CrossRefPubMed Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165CrossRefPubMed
go back to reference Lee K, Heeger AJ, Cao Y (1993) Reflectance of polyaniline protonated with camphor sulfonic acid: disordered metal on the metal–insulator boundary. Phys Rev B 48:14884–14891CrossRef Lee K, Heeger AJ, Cao Y (1993) Reflectance of polyaniline protonated with camphor sulfonic acid: disordered metal on the metal–insulator boundary. Phys Rev B 48:14884–14891CrossRef
go back to reference Lee K, Menon R, Yoon CO, Heeger AJ (1995) Reflectance of conducting polypyrrole: observation of the metal–insulator transition driven by disorder. Phys Rev B 52:4779–4787CrossRef Lee K, Menon R, Yoon CO, Heeger AJ (1995) Reflectance of conducting polypyrrole: observation of the metal–insulator transition driven by disorder. Phys Rev B 52:4779–4787CrossRef
go back to reference Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925CrossRef Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
go back to reference Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef
go back to reference Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769PubMed Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769PubMed
go back to reference Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182CrossRefPubMedPubMedCentral Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182CrossRefPubMedPubMedCentral
go back to reference Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424CrossRef Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424CrossRef
go back to reference Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRef Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRef
go back to reference Smith NV (2001) Classical generalization of the Drude formula for the optical conductivity. Phys Rev B 64:155106CrossRef Smith NV (2001) Classical generalization of the Drude formula for the optical conductivity. Phys Rev B 64:155106CrossRef
go back to reference Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829CrossRef Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829CrossRef
go back to reference Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719CrossRef Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719CrossRef
go back to reference Unuma T, Fujii K, Kishida H, Nakamura A (2010) Terahertz complex conductivities of carriers with partial localization in doped polythiophenes. Appl Phys Lett 97:033308CrossRef Unuma T, Fujii K, Kishida H, Nakamura A (2010) Terahertz complex conductivities of carriers with partial localization in doped polythiophenes. Appl Phys Lett 97:033308CrossRef
go back to reference Unuma T, Umemoto A, Kishida H (2013a) Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl Phys Lett 103:213305CrossRef Unuma T, Umemoto A, Kishida H (2013a) Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl Phys Lett 103:213305CrossRef
go back to reference Unuma T, Yamada N, Nakamura A, Kishida H, Lee S-C, Hong E-Y, Lee S-H, Kwon O-P (2013b) Direct observation of carrier delocalization in highly conducting polyaniline. Appl Phys Lett 103:053303CrossRef Unuma T, Yamada N, Nakamura A, Kishida H, Lee S-C, Hong E-Y, Lee S-H, Kwon O-P (2013b) Direct observation of carrier delocalization in highly conducting polyaniline. Appl Phys Lett 103:053303CrossRef
go back to reference Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ (2015) Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin films. Nanoscale Res Lett 10:386CrossRefPubMedPubMedCentral Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ (2015) Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin films. Nanoscale Res Lett 10:386CrossRefPubMedPubMedCentral
go back to reference Van den Berg O, Schroeter M, Capadonaac JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRef Van den Berg O, Schroeter M, Capadonaac JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRef
go back to reference Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal–insulator percolation transition. Phys Rev B 76:125408CrossRef Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal–insulator percolation transition. Phys Rev B 76:125408CrossRef
go back to reference Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sour 249:148–155CrossRef Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sour 249:148–155CrossRef
Metadata
Title
Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films
Authors
Takeya Unuma
Omou Kobayashi
Iffah F. A. Hamdany
Vinay Kumar
Jarkko J. Saarinen
Publication date
25-01-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 5/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02276-5

Other articles of this Issue 5/2019

Cellulose 5/2019 Go to the issue