Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Text Mining Support to Pandemic Planning

Authors : Desheng Dash Wu, David L. Olson

Published in: Pandemic Risk Management in Operations and Finance

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Text mining is a useful tool to identify sentiment. Not only it is widely used in stock market operations but it can also be applied to analyze Web content or other documents related to pandemic operations. A support vector machine is a data mining algorithm useful for certain types of data. This chapter demonstrates the use of a Web crawler to identify financial sentiment, a process that would also work for pandemic management. A support vector model is applied to a Chinese stock market index, demonstrating that technology also could be extended to pandemic planning and control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds) Mining Text Data. (springer, Heidelberg, pp. 415-463). Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds) Mining Text Data. (springer, Heidelberg, pp. 415-463).
2.
go back to reference Kelly, F. C. (2003). Why you win or lose: The psychology of speculation. Courier Corporation. Kelly, F. C. (2003). Why you win or lose: The psychology of speculation. Courier Corporation.
3.
go back to reference Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market movement direction with support vector machine. Computers and Operations Research, 32(10), 2513–2522.CrossRef Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market movement direction with support vector machine. Computers and Operations Research, 32(10), 2513–2522.CrossRef
4.
go back to reference Yu, L., Chen, H., Wang, S., & Lai, K. K. (2009). Evolving least squares support vector machines for stock market trend mining. IEEE Transactions on Evolutionary Computation, 13(1), 87–102.CrossRef Yu, L., Chen, H., Wang, S., & Lai, K. K. (2009). Evolving least squares support vector machines for stock market trend mining. IEEE Transactions on Evolutionary Computation, 13(1), 87–102.CrossRef
5.
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.CrossRef Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.CrossRef
Metadata
Title
Text Mining Support to Pandemic Planning
Authors
Desheng Dash Wu
David L. Olson
Copyright Year
2020
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-030-52197-4_4

Premium Partner