Skip to main content
Top
Published in: Strength of Materials 4/2020

09-11-2020

Texture Evolution of Modified 12%Cr Steel in High-Temperature Compression

Authors: X. Z. Zhang, Y. J. Li

Published in: Strength of Materials | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The texture evolution of modified 12%Cr steel in high-temperature compression was investigated under a 10, 25, 35, and 50% reduction at 1150°C by using Gleeble-1500 D thermal simulation machine. Electron backscattering diffraction analysis showed that the texture of modified 12%Cr steel varied within α, γ, and ε and Goss fibers coexisting to γ and ε , then to α and ε , with the {hkl} <111> orientation always existing in compression. Recrystallization nuclei contribute to γ-fiber strengthening due to their high-energy mechanism. First activated. α-fibers can be consolidated owing to the interaction of deformation and recrystallization. In the compression procedure of an ultrasupercritical high-pressure rotor made of modified 12%Cr steel, the deformation should be controlled under the recrystallization activation energy of α-fibers to obtain the microstructure featured by the γ-fiber recrystallization texture, and vice versa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. H. Liu and J. T. Lin, “Technical progress of material for heavy forgings of steam turbines rotors at home and abroad (1),” Metals Heat Treatment Abroad, 3, 5–7 (1999). X. H. Liu and J. T. Lin, “Technical progress of material for heavy forgings of steam turbines rotors at home and abroad (1),” Metals Heat Treatment Abroad, 3, 5–7 (1999).
2.
go back to reference S. D. Yadav, M. El-Tahawy, S. Kalácska, et al., “Characterizing dislocation configurations and their evolution during creep of a new 12% Cr steel,” Mater. Charact., 134, 387–397 (2017).CrossRef S. D. Yadav, M. El-Tahawy, S. Kalácska, et al., “Characterizing dislocation configurations and their evolution during creep of a new 12% Cr steel,” Mater. Charact., 134, 387–397 (2017).CrossRef
3.
go back to reference Z. Wang, J. Xu, Y. Takeda, et al., “An electrochemical method for detection and quantification of Laves phase in 12Cr martensitic stainless steel,” Corros. Sci., 135, 215–221 (2018).CrossRef Z. Wang, J. Xu, Y. Takeda, et al., “An electrochemical method for detection and quantification of Laves phase in 12Cr martensitic stainless steel,” Corros. Sci., 135, 215–221 (2018).CrossRef
4.
go back to reference T. C. Lin, H. Wang, C. J. Wang, et al., “Research status of 12%Cr HP-IP supercritical rotor steel,” Foundry Tech., 33, 1267–1269 (2012). T. C. Lin, H. Wang, C. J. Wang, et al., “Research status of 12%Cr HP-IP supercritical rotor steel,” Foundry Tech., 33, 1267–1269 (2012).
5.
go back to reference M. M. El Rayes and E. A. El-Danaf, “High temperature deformation behavior of as-produced and retired 9–12%Cr power plant steel,” Mater. Sci. Eng. A, 697, 203–210 (2017).CrossRef M. M. El Rayes and E. A. El-Danaf, “High temperature deformation behavior of as-produced and retired 9–12%Cr power plant steel,” Mater. Sci. Eng. A, 697, 203–210 (2017).CrossRef
6.
go back to reference G. Seidametova, J.-B. Vogt, I. P. Serre, “The early stage of fatigue crack initiation in a 12%Cr martensitic steel,” Int. J. Fatigue, 106, 38–48 (2018).CrossRef G. Seidametova, J.-B. Vogt, I. P. Serre, “The early stage of fatigue crack initiation in a 12%Cr martensitic steel,” Int. J. Fatigue, 106, 38–48 (2018).CrossRef
7.
go back to reference J. L. Yan, H. Ding, H. Huang, et al., “In-situ investigation of tensile deformation and fracture mechanism of 12Cr1MoV steel after long-term service,” Mater. Sci. Eng. A, 700, 33–41 (2017).CrossRef J. L. Yan, H. Ding, H. Huang, et al., “In-situ investigation of tensile deformation and fracture mechanism of 12Cr1MoV steel after long-term service,” Mater. Sci. Eng. A, 700, 33–41 (2017).CrossRef
8.
go back to reference S.-L. Zhang and F.-Z. Xuan, “Interaction of cyclic softening and stress relaxation of 9–12%Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling,” Int. J. Plasticity, 98, 45–64 (2017).CrossRef S.-L. Zhang and F.-Z. Xuan, “Interaction of cyclic softening and stress relaxation of 9–12%Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling,” Int. J. Plasticity, 98, 45–64 (2017).CrossRef
9.
go back to reference H. Wang , W. Yan, S. van Zwaag, et al., “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater., 134, 143–154 (2017).CrossRef H. Wang , W. Yan, S. van Zwaag, et al., “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater., 134, 143–154 (2017).CrossRef
10.
go back to reference Z. X. Liu, Basic Research and Process Simulation of Heat Treatment for 12%Cr Ultra-Supercritical Rotor Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2012). Z. X. Liu, Basic Research and Process Simulation of Heat Treatment for 12%Cr Ultra-Supercritical Rotor Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2012).
11.
go back to reference F. L. Sun, Experimental and Simulation Study on Microstructure Evolution of 12%Cr Ultra-Supercritical Rotor Steel during forging Process, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011). F. L. Sun, Experimental and Simulation Study on Microstructure Evolution of 12%Cr Ultra-Supercritical Rotor Steel during forging Process, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011).
12.
go back to reference X. Liang, Theoretical and Experimental Study on Hot Forging Crack of 12%Cr Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011). X. Liang, Theoretical and Experimental Study on Hot Forging Crack of 12%Cr Steel, Master Thesis, Taiyuan University of Sciences & Technology, Taiyuan (2011).
13.
go back to reference H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., Oxford (2006). H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier Ltd., Oxford (2006).
14.
go back to reference G. Krauss, Steels: Processing, Structure, and Performance, ASM International (2005). G. Krauss, Steels: Processing, Structure, and Performance, ASM International (2005).
15.
go back to reference E. I. Galindo-Nava and P. E. J. Rivera-Díaz-del-Castillo, “A model for the microstructure behaviour and strength evolution in lath martensite,” Acta Mater., 98, 81–93 (2015).CrossRef E. I. Galindo-Nava and P. E. J. Rivera-Díaz-del-Castillo, “A model for the microstructure behaviour and strength evolution in lath martensite,” Acta Mater., 98, 81–93 (2015).CrossRef
16.
go back to reference S. Morito, X. Huang, T. Furuhara, et al., “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater., 54, 5323–5331 (2006).CrossRef S. Morito, X. Huang, T. Furuhara, et al., “The morphology and crystallography of lath martensite in alloy steels,” Acta Mater., 54, 5323–5331 (2006).CrossRef
17.
go back to reference V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon & Breach, Amsterdam (2000). V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon & Breach, Amsterdam (2000).
18.
go back to reference B. Radhakrishnan and G. B. Sarma, “Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals,” Mater. Sci. Eng. A, 494, 73–79 (2008).CrossRef B. Radhakrishnan and G. B. Sarma, “Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals,” Mater. Sci. Eng. A, 494, 73–79 (2008).CrossRef
19.
go back to reference S.-H. Choi and Y.-S. Jin, “Evaluation of stored energy in cold-rolled steels from EBSD data,” Mater. Sci. Eng. A, 371, 149–159 (2004).CrossRef S.-H. Choi and Y.-S. Jin, “Evaluation of stored energy in cold-rolled steels from EBSD data,” Mater. Sci. Eng. A, 371, 149–159 (2004).CrossRef
20.
go back to reference T. Sakai, T. Yoneme, K. Yoneda, and Y. Saito, “Shear texture control in low carbon steel sheet by differential speed rolling,” Mater. Sci. Forum, 426–432, 3569–3574 (2003).CrossRef T. Sakai, T. Yoneme, K. Yoneda, and Y. Saito, “Shear texture control in low carbon steel sheet by differential speed rolling,” Mater. Sci. Forum, 426–432, 3569–3574 (2003).CrossRef
22.
go back to reference F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York (1995), pp. 335–337. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York (1995), pp. 335–337.
23.
go back to reference M. R. Barnett and L. Kestens, “Formation of {111} <110> and {111} <112> textures in cold rolled and annealed IF sheet steel,” ISIJ Int., 39, 923–929 (1999).CrossRef M. R. Barnett and L. Kestens, “Formation of {111} <110> and {111} <112> textures in cold rolled and annealed IF sheet steel,” ISIJ Int., 39, 923–929 (1999).CrossRef
24.
go back to reference N. Yoshinaga, D. Vanderschueren, L. Kestens, et al., “Cold-rolling and recrystallization texture formation in electro-deposited pure iron with a sharp and homogeneous γ-fiber,” ISIJ Int., 38, 610–616 (1998).CrossRef N. Yoshinaga, D. Vanderschueren, L. Kestens, et al., “Cold-rolling and recrystallization texture formation in electro-deposited pure iron with a sharp and homogeneous γ-fiber,” ISIJ Int., 38, 610–616 (1998).CrossRef
25.
go back to reference L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, “A model of grain fragmentation based on lattice curvature,” Acta Mater., 58, 1782–1794 (2010).CrossRef L. S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, “A model of grain fragmentation based on lattice curvature,” Acta Mater., 58, 1782–1794 (2010).CrossRef
26.
go back to reference B. Radhakrishnan and G. Sarma, “The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminium alloys,” Philos. Mag., 84, 2341–2366 (2004).CrossRef B. Radhakrishnan and G. Sarma, “The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminium alloys,” Philos. Mag., 84, 2341–2366 (2004).CrossRef
27.
go back to reference B. Radhakrishnan and G. Sarma, “Simulating the deformation and recrystallization of aluminum bicrystals,” JOM, 56, 55–62 (2004).CrossRef B. Radhakrishnan and G. Sarma, “Simulating the deformation and recrystallization of aluminum bicrystals,” JOM, 56, 55–62 (2004).CrossRef
28.
go back to reference P. Yang, P. Gao, and Z. Sun, “Local deformation inhomogeneities in compressed low carbon steels,” Mater. Sci. Tech. [in Chinese], 13, 657 (2005). P. Yang, P. Gao, and Z. Sun, “Local deformation inhomogeneities in compressed low carbon steels,” Mater. Sci. Tech. [in Chinese], 13, 657 (2005).
29.
go back to reference M. Humbert, B. Petit, B. Bolle, and N. Gey, “Analysis of the γ–ε–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at –60°C,” Mater. Sci. Eng. A, 454–455, 508–517 (2007).CrossRef M. Humbert, B. Petit, B. Bolle, and N. Gey, “Analysis of the γ–ε–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at –60°C,” Mater. Sci. Eng. A, 454–455, 508–517 (2007).CrossRef
30.
go back to reference M. R. Daymond, R. A. Holt, S. Cai, et al., “Texture inheritance and variant selection through an hcp–bcc–hcp phase transformation,” Acta Mater., 58, 4053–4066 (2010).CrossRef M. R. Daymond, R. A. Holt, S. Cai, et al., “Texture inheritance and variant selection through an hcp–bcc–hcp phase transformation,” Acta Mater., 58, 4053–4066 (2010).CrossRef
31.
go back to reference S. H. Lee, J. Y. Kang, H. N. Han, et al., “Variant selection in mechanically-induced martensitic transformation of metastable austenitic steel,” ISIJ Int., 45, 1217–1219 (2005).CrossRef S. H. Lee, J. Y. Kang, H. N. Han, et al., “Variant selection in mechanically-induced martensitic transformation of metastable austenitic steel,” ISIJ Int., 45, 1217–1219 (2005).CrossRef
32.
go back to reference E. P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki, “Martensitic transformation and texture in novel bcc Fe-Mn-Al-Ni-Cr alloys,” Procedia Engineer., 10, 2214–2219 (2011).CrossRef E. P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki, “Martensitic transformation and texture in novel bcc Fe-Mn-Al-Ni-Cr alloys,” Procedia Engineer., 10, 2214–2219 (2011).CrossRef
Metadata
Title
Texture Evolution of Modified 12%Cr Steel in High-Temperature Compression
Authors
X. Z. Zhang
Y. J. Li
Publication date
09-11-2020
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2020
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-020-00206-6

Other articles of this Issue 4/2020

Strength of Materials 4/2020 Go to the issue

Premium Partners