Skip to main content
Top

2020 | OriginalPaper | Chapter

Texture Feature Extraction: Impact of Variants on Performance of Machine Learning Classifiers: Study on Chest X-Ray – Pneumonia Images

Authors : Anamika Gupta, Anshuman Gupta, Vaishnavi Verma, Aayush Khattar, Devansh Sharma

Published in: Big Data Analytics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image textures are a set of image characteristics used for identifying regions of interests (ROIs) in images. These numerical features can thus be used to classify images in various classifiers. This paper introduces the task of classifying Chest X-ray images with Machine Learning Classifiers and to see the impact of variations on the result of classification. For this purpose, second-order statistical features (GLCM texture features) are extracted from all the images with preprocessing and classification is performed using these features. Various variants are applied for image processing. First-order features are included, the image is divided into multiple regions, different values of distance for GLCM are used. Several evaluation metrics are used to judge the performance of the classifiers. Results on Chest X-ray (Pneumonia) dataset shows remarkable improvements in the accuracy, F1-Score, and the AUC of the classifier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
12.
go back to reference Kim, J.I.N.H.O., Kim, B.S., Savarese, S.: Comparing image classification methods: K-nearest-neighbor and support-vector-machines. In: Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American conference on Applied Mathematics, vol. 1001, pp. 133–138. WSEAS, Wisconsin (2012) Kim, J.I.N.H.O., Kim, B.S., Savarese, S.: Comparing image classification methods: K-nearest-neighbor and support-vector-machines. In: Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American conference on Applied Mathematics, vol. 1001, pp. 133–138. WSEAS, Wisconsin (2012)
13.
go back to reference Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised learning. Int. J. Comput. Sci. 1(2), 111–117 (2006) Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised learning. Int. J. Comput. Sci. 1(2), 111–117 (2006)
16.
go back to reference Pugalenthi, R., Rajakumar, M.P., Ramya, J., Rajinikanth, V.: Evaluation and classification of the brain tumor MRI using machine learning technique. J. Control Eng. Appl. Inform. 21(4), 12–21 (2019) Pugalenthi, R., Rajakumar, M.P., Ramya, J., Rajinikanth, V.: Evaluation and classification of the brain tumor MRI using machine learning technique. J. Control Eng. Appl. Inform. 21(4), 12–21 (2019)
17.
go back to reference Rish, I.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46 (2001) Rish, I.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, pp. 41–46 (2001)
Metadata
Title
Texture Feature Extraction: Impact of Variants on Performance of Machine Learning Classifiers: Study on Chest X-Ray – Pneumonia Images
Authors
Anamika Gupta
Anshuman Gupta
Vaishnavi Verma
Aayush Khattar
Devansh Sharma
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-66665-1_11

Premium Partner