Skip to main content
Top
Published in:

Open Access 30-01-2023 | Original Paper

The 30-year impact of post-windthrow management on the forest regeneration process in northern Japan

Authors: Jing Li, Junko Morimoto, Wataru Hotta, Satoshi N. Suzuki, Toshiaki Owari, Motoko Toyoshima, Futoshi Nakamura

Published in: Landscape and Ecological Engineering | Issue 2/2023

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The frequency and intensity of typhoons are expected to increase over time due to climate change. These changes may expose forests to more windthrow in the future, and increasing the resilience of hemiboreal forests through forest management after windthrow is important. Here, we quantified forest structure recovery using aerial photos and light detection and ranging (LiDAR) data after catastrophic windthrow events. Our aims are to test the following three hypotheses: (1) forest structure will not recover within 30 years after windthrow, (2) forest recovery will be affected not only by salvaging but also pre-windthrow attributes and geographical features, and (3) various post-windthrow management including salvaging will drastically alter tree species composition and delay forest recovery. Our results revealed that hypothesis (1) and (2) were supported and (3) was partially supported. The ordination results suggested that more than 30 years were needed to recover canopy tree height after windthrow in hemiboreal forests in Hokkaido, Japan. Salvage logging did not delay natural succession, but it significantly decreased the cover ratio of conifer species sites (0.107 ± 0.023) compared with natural succession sites (0.310 ± 0.091). The higher the elevation, the steeper the site, and the higher the average canopy height before windthrow, the slower the recovery of forest stands after windthrow and salvaging. Scarification and planting after salvage logging significantly increased the number of canopy trees, but those sites differed completely in species composition from the old growth forests. Our study thus determined that the choice and intensity of post-disturbance management in hemiboreal forests should be carefully considered based on the management purpose and local characteristics.
Notes

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s11355-023-00539-9.

Introduction

The severity and frequency of wind disturbances have intensified due to climate change (Usbeck et al. 2010; Gregow et al. 2017; Laapas et al. 2019). This intensification may result in existing forest ecosystems being transformed into different or non-forest states with lower capacities to provide desired ecosystem services in the future (Kamimura et al. 2008; Johnstone et al. 2016). Nayak and Takemi (2019) predicted an increased number of typhoons with more precipitation in Hokkaido, northern Japan, in the future, and Murakami et al. (2012) also projected forests will experience more intense winds in northern Japan. Furthermore, hemiboreal forests dominated by conifer species are reported to be more sensitive to windthrow than those dominated by broadleaf species (Rich et al. 2007).
With the aim of maintaining the ecosystem services provided by hemiboreal forests and increasing their resilience to different disturbances, monitoring forest structure recovery after windthrow is of greater importance than ever before. A complex forest structure (i.e., more tree size diversity and the development of multilayered forests) maintains biodiversity (Maltamo et al. 2005). Forest structure is also the dominant driver of timber productivity (Bohn and Huth 2017). Thus, monitoring forest structure recovery with the aim of maintaining the ecosystem services provided by hemiboreal forests is of paramount importance. However, windthrow damage to forest structures is easily ignored. Although forest structures after windthrow have been studied intensively in temperate forests, the long-term impacts of windthrow on boreal hemiboreal forests remain uncertain (Rich et al. 2007; Taeroe et al. 2019). Senf et al. (2019) found that forest structures on 84% of the disturbed area on average reached the recovery threshold within 30 years post-disturbance in temperate forests in central Europe. As the growth of trees in hemiboreal forests is relatively slower than that in temperate forests, the forest structure recovery after a windthrow event may also be slower. Kosugi et al. (2016) showed that more than 60 years are needed for hemiboreal forests to reach the stem exclusion stage following disturbance.
However, forest structure recovery can be altered by various factors. Post-windthrow management is a key factor affecting forest structure recovery after windthrow, and the potential damage associated with windthrow has been largely overlooked until very recently (Seidl et al. 2014; Taeroe et al. 2019). Salvage logging aims to prevent subsequent fires and insect outbreaks and can remove nurse logs and might destroy residual vegetation, the main sources of subsequent recovery (Morimoto et al. 2011). The consequences of these actions might last for 60 years (Morimoto et al. 2019). These practices also reduce the carbon stocks following catastrophic windthrow events (Hotta et al. 2020), potentially aggravating climate change in return. Soil scarification aims to remove organic-rich soil layers, which contain pathogens, and understory vegetation, which inhibits tree regeneration. However, advanced tree seedlings are also completely destroyed; thus, forest recovery would be much slower in scarified sites (Nilsson et al. 2006; Aoyama et al. 2011). Planting conifers is a traditional way to provide industrial wood, and conifers are more sensitive to windthrow. This process is thus likely to create forests that are more vulnerable to windthrow (Dhubháin and Farrelly 2018). In the face of future climate change, adaptation of the current management practices is urgently needed.
However, the impacts of forest management are mostly geographically confined. More attention should thus be given to local characteristics, such as the pre-windthrow attributes and geographic features that affect forest recovery (Barij et al. 2007; Hautier et al. 2018; Hu et al. 2018). The regeneration process following windthrow is based on attributes such as dispersed seeds and existing saplings from the pre-disturbance period in most conifer forests in the hemiboreal zone (Greene et al. 2011; Hérault and Piponiot 2018). Differences in pre-windthrow attributes could thus possibly affect successional composition (Kosugi et al. 2016). Slope aspects connected with light competition have also been suggested to be crucial in the early stage of forest recovery after a disturbance (Hasler 1982; Hu et al. 2018). Elevation can affect the structural complexity of a forest (Asner et al. 2014; Tudoroiu et al. 2016), and steepness might influence the forest structure by altering the water uptake and seed erosion processes (Barij et al. 2007). Considering these effects should be necessary when formulating suitable management strategies targeted at various regions.
Photogrammetry and LiDAR data have been proven to be powerful methods for assessing forest resources over a wide range (Shi et al. 2020). However, no previous studies have managed to use it to conduct landscape-level research, which obtains a combined understanding based on various types of major management practices (e.g., salvage logging, scarification, planting and seeding), predisturbance attributes and topographic features after windthrow (Rammig et al. 2007).
Here, we attempted to quantify the forest structure recovery 30 years following a major wind disturbance event using aerial photos and LiDAR data. We specifically examined the impacts of five types of postmanagement practices, different predisturbance attributes and topographic features on the forest structure recovery process in a hemiboreal forest area in Hokkaido, northern Japan, which plays an irreplaceable role in alleviating global warming. As our results may be utilized to optimize post-management processes in the face of increasing wind disturbances at the landscape level, we raised three hypotheses: (1) forest structure will not recover within 30 years after windthrow, (2) forest recovery will be affected not only by salvaging but also pre-windthrow attributes and geographical features, and (3) various post-windthrow management including salvaging will drastically alter tree species composition and delay forest recovery.

Materials and methods

Study area

We targeted the University of Tokyo Hokkaido Forest (UTHF) in Furano, Hokkaido, Japan (Fig. 1a; 43° 10′–21′ N, 142° 23′–41′ E). Various forest management experiments have been conducted and recorded for this area since 1958. The available aerial photos before and after windthrow and recent LiDAR data that can be found for that area enable this research. The total forest area is 22,717 ha, with a large elevational difference from 190 to 1459 m. From 2011 to 2020, the average temperature at the arboretum (230 m) was 6.6 °C, and the annual precipitation was nearly 1196 mm (The University of Tokyo Hokkaido Forest 2021). From the end of November to the beginning of April, the forest is covered by snow, and the maximum snow depth is 85.6 cm. Abies sachalinensis (F. Schmidt) Mast (Sakhalin fir) dominantly covers the UTHF site from elevations of 200 m to approximately 1200 (Jayathunga et al. 2018), and dwarf bamboo (Sasa senanensis (Franch. Et Sav.) Rehder and S. kurilensis (Rupr.) Makino et Shibata occupy the forest floor (Owari et al. 2011). A strong typhoon (Typhoon Thad) affected the UTHF on the 23rd of August, 1981. The wind reached 26.3 ms−1 and caused severe windthrow within most of the forest area (Fig. 1b). After this typhoon, a recovery plan including 4 forms of post-windthrow management (Table 1) was set up and implemented in March 1986.
Table 1
Post-management projects after the major wind disturbance event in 1981
Management category
Number of plots
Windthrow
Post-windthrow management
Salvage logging
Scarification
Planting
Sowing
RF
6
NS
8
X
SL
10
X
X
SL_S
10
X
X
X
X (Oak species)
SL_P(As)
10
X
X
X
X (Abies species)
SL_P(Pg)
10
X
X
X
X (Picea species)
RF, reference (the natural mixed forest plot that did not experience the windthrow event in 1981); NS, natural succession sites after the windthrow event in 1981; SL, salvage logging sites after the windthrow event in 1981; SL_S, salvage logging + scarification + Quercus crispula sowing sites after the windthrow event in 1981; SL_P(As), salvage logging + scarification + Abies sachalinensis planting sites after the windthrow event in 1981; SL_P(Pg), salvage logging + scarification + Picea glehnii planting sites after the windthrow event in 1981
To reveal the combined influences of the post-windthrow management projects, pre-windthrow attributes and topographic features on forest structure recovery, we selected 48 vegetation plots (Fig. 1c and Table 1) with sizes of 50 m × 50 m based on a wind disturbance map (Fig. 1b) created in ArcGIS (ArcMap 10.7.1, Esri Japan Corp., Japan) by referring to management records from 1981 to 1986. All plots were focused on the seriously damaged area determined by assessing aerial photos taken in 1981. We also certified that no other major artificial or natural disturbances occurred in the study plots after the post-management project by checking the records from 1986 to 2015 provided by UTHF. The reference (RF) in our study was represented by a stand of forests that has undergone no major disturbances in the last 30 years. We considered this reference plot to represent the possible climax stage of the UTHF plots following a major wind disturbance event on a long-term scale.

Remote sensing data

In this study, we used aerial photos taken in 1977 to quantify the complexity of the canopy layers before the windthrow event and aerial photos taken in 2017 to quantify the complexity of the recent canopy layers 30 years following windthrow. Light detection and ranging (LiDAR) data (Table S1.1) collected from 2015 to 2019 were used to generate the leaf area index (LAI) data to determine the complexity of the current forest structure, including the shrub layers. Although a temporal difference was found between the acquisitions of the aerial photos taken in 2017 and the LiDAR data, we supposed that any influence on the results was negligible because (1) no major disturbance occurred in the study sites from 2015 to 2020 and (2) a 5-year gap is insufficient to produce any remarkable changes in hemiboreal forests. We collected aerial photographs (Table S1.2) targeting the study sites from the Ministry of Agriculture, Forestry and Fisheries in Japan (MAFF) and the Geospatial Information Authority of Japan (GIA). We quantified the average canopy tree height in 1977 as the pre-windthrow attributes and the average canopy tree height, number of canopy trees and forest cover ratio in 2017 as the forest structure 30 years after the management projects using Stereo Viewer Pro (PHOTEC Co., Ltd., Japan). Stereo Viewer Pro allows the user to perform stereoscopic measurements based on aerial photographs. It is an established method for measuring canopy tree height and forest cover ratio, and the validity of data using this method has been demonstrated in several studies (St-Onge et al. 2004; Korpela 2004; Korpela and Tokola 2006; Shimizu et al. 2014). In Stereo Viewer Pro, we measured the height of all visible vegetation in each plot (Fig. S1.1). Each measured vegetation was set as a 3D point with X, Y, and Z coordinates in Stereo Viewer Pro; these points could then be opened in ArcGIS or exported as a text file. The polygon of each crown was created in Stereo Viewer Pro and transferred into ArcGIS for the following analyses. In ArcGIS, we first merged the crown polygons to represent the forested area in each plot and used the field calculator function to calculate the average canopy tree height, number of canopy trees and forest cover ratio in each plot (Table 2). We confirmed the accuracy of tree height estimated by Stereo Viewer Pro by comparing with tree height estimated by LiDAR (Fig. S1.2). We found a strong consistency between them. Further, we compared the estimated canopy tree density with stem density derived from field census data, provided by UTHF, for 11 plots (Fig. S1.3). The stem density from remote sensing was roughly consistent with the density of stems with DBH ≥ 11 cm from the field data.
Table 2
Descriptions of the aerial imagery-derived and LiDAR-derived metrics used in this study
Variables
Unit
Description
Pre-windthrow forest structure (in 1977)
Average canopy tree height in 1977
m
Average height of canopy trees measured the plots by Stereo Viewer Pro using aerial photos in 1977
Post-windthrow forest structure (in 2017)
Average canopy tree height in 2017
m
Average height of canopy trees measured the plots by Stereo Viewer Pro using aerial photos in 2017
Number of canopy trees in 2017
ha−1
Number of canopy trees in each plot
Forest cover ratio in 2017
 
Forested area (area covered by trees higher than 3 m)/plot area
Leaf area index (LAI) in 2017
 
Calculated by LiDAR 360 V4.1 following the same procedure as Li et al. (2016)
Topographic features
Elevation
m
Calculated based on a 0.1 resolution in DTM using ArcMap 10.7.1
Slope angle
º
Slope aspect
 
East, south, west and north. The east-facing slope included the slopes facing from northeast to southeast; the south-facing slope included the slopes facing from southeast to southwest; the west-facing slope included the slopes facing from southwest to northwest; and the north-facing slope included the slopes facing from northwest to northeast.
Furthermore, we aimed to compensate for the limitation whereby aerial photos might neglect trees in the intermediate or suppressed layers by estimating the LAI using LiDAR data. The LiDAR datasets used herein were acquired in 2015, 2017, 2018 and 2019 using an Optech Airborne Laser Terrain Mapper (ALTM) Orion M300 sensor (Teledyne Technologies, Waterloo, ON, Canada) and a GNSS Trimble 5700・R3 (Trimble Inc., USA) mounted on an AS350B helicopter (Eurocopter Group, USA) (Moe et al. 2020). Table 4 shows the flight parameters of the LiDAR campaigns each year. The LiDAR data were initially processed and delivered in LAS format by Hokkaido Aero Asahi Corp. (Japan). The accuracy of these LiDAR data was also verified by Jayathunga et al. (2018) and Moe et al. (2020). The ALS Forest function in LiDAR360 V4.1 (GreenValley International Corp., USA) enabled us to calculate the LAI in each plot from the LiDAR data provided by the UTHF. In this process, we first normalized the point cloud data by using the ‘Normalize by DEM’ function in LiDAR360. Then, we used the ‘ALS Forest’ function to calculate the LAI by testing several parameters, including the grid size, height break and leaf angle distribution. We finally chose the recommended value of 0.5 as the leaf angle distribution (Li et al. 2016; Jin et al. 2020) and 20 m as the grid size. As the maximum individual crown in our field measured by Stereo Viewer Pro was larger than 15 and less than 20 m, we chose 20 m instead of the recommended 15 m when running the function. The height break was a parameter that allowed us to avoid the influence of vegetation on the forest floor. The final value we chose for this parameter was 3 m, as we considered any vegetation lower than 3 m to be representative of the shrub layer when processing the aerial photos previously.
We performed a field survey on the 3rd and 4th of August 2021 to identify the dominant species in the canopy layer. We first visually separated the identified trees into 237 groups using aerial photos based on texture and color and labeled these groups manually. However, considering the time required for this visual identification process, we selected only 6 plots under each management scheme for conducting the species classification process. In this process, we selected one representative tree from each of the 237 groups and circled these trees in both the aerial photos and digital canopy height model (DCM; resolution of 0.1 m) provided by UTHF, thus collecting the crown images and the GNSS data. We brought the prepared data to the field to verify the species of the targeted trees using aerial photos and a handy GNSS unit (GPSMAP® 62SCJ, Garmin Ltd.). Twenty-one species represented by 237 trees were recorded in the field (Table 3). The subsequent analyses were performed at the species level basically. But four species of Acer, two species of Betula, and two species of Salix were analyzed at the genus level because they sometimes appear to be the same in aerial photographs. We also classified the species into three regeneration types based on Hanada et al. (2006): pioneer species, gap species, and shade-tolerant species.
Table 3
Descriptions of the species considered in this study
https://static-content.springer.com/image/art%3A10.1007%2Fs11355-023-00539-9/MediaObjects/11355_2023_539_Tab3_HTML.png
aGap species: a species whose shade tolerance is between those of pioneer species and shade-tolerant species

Statistical analyses

R statistical software (v. 4.0.3, R Core Team 2020) was used for the statistical analysis conducted in this study.

Forest structure characteristics 30 years after the windthrow event and post-windthrow management practices: principal component analysis (PCA)

To determine the forest structure characteristics following the windthrow event and according to each post-windthrow management scheme, a PCA was performed. The standardized indicator data (the average canopy tree height, number of canopy trees, forest cover ratio and LAI data) were analyzed by PCA using the ‘prcomp’ function in R. The length of each arrow indicates the variance of the indicators in the ordinations, whereas the angles between the arrows indicate the strength of the correlation between the indicators (Gniazdowski 2017). The 95% confidence ellipse of each group indicates the overall characteristics of and similarity among groups. In the PCA results, if the 95% confidence ellipse was closer to the reference ellipse with a similar angle of inclination, we considered this sample to have a more similar structure with the reference, which might imply a more complex structure (Franklin and Van Pelt 2004).

Species composition characteristics 30 years after windthrow and post-windthrow management: pairwise test

To investigate the differences in the canopy-layer species composition among the management categories, we conducted pairwise tests for multiple comparisons. We ran the ‘pairwise.t.test’ function in R and chose Bonferroni as the method for adjusting the p values to compare the relative abundance of classified species in the canopy layer, including broadleaf, conifer, pioneer, and shade-tolerant species.

Domination of species and species composition similarity 30 years after the windthrow event and post-windthrow management: nonmetric multidimensional scaling (NMDS)

To diagrammatically determine the species composition similarity among the management groups, the species composition was ordinated by NMDS using the ‘metaMDS’ function in the package ‘vegan’ (version 2.5-7). In the NMDS process, we used the log-transformed coverage data of each post-windthrow management group and selected the Bray–Curtis scale as the length index.

Factors influencing forest structure recovery 30 years after windthrow: generalized linear models (GLMs)

To recognize the important factors affecting forest structure recovery at the landscape level, we designed 2 generalized linear models (GLMs) using the ‘stats’ package in R. To identify the determinants of the average canopy tree height in 2017, we chose the average canopy tree height in 2017 as the response variable and the post-windthrow management schemes (NS and SL), the average canopy tree height in 1977 (representing the pre-windthrow attributes) and topographical features as the explanatory variables in Model 1 (Table 4, Model 1; average tree height derived using the gamma distribution error with the inverse link function). We selected the average canopy tree height in 1977 in Model 1 as a factor because taller trees exhibit a higher windthrow risk (Krejci et al. 2018). A slow recovery will be easily found in serious windthrow areas. Thus, we expected that the higher average canopy tree height before windthrow, related to a more serious windthrow, would negatively affect the average canopy tree height recovery 30 years after windthrow.
Table 4
Design of the model structures utilized in the GLM analysis
Model 1
Explanatory variable
Response variables
Pre-windthrow forest structure (in 1977)
Topographical features
Post-windthrow management
Average canopy tree height in 1977
Elevation
Slope aspect
Slope angle
NS
SL
Post-windthrow forest structure in 2017
Average canopy tree height
 
Model 2
Topographical features
Post-windthrow management
Response variables
Elevation
Slope aspect
Slope angle
NS
SL
SL_S
SL_P (As)
SL_P (Pg)
Post-windthrow forest structure (in 2017)
Average canopy tree height
Number of canopy trees
Forest cover ratio
Leaf Area Index (LAI)
To recognize the factors influencing forest structure recovery in 2017 following scarification, sowing and planting, we chose the average canopy tree height, number of canopy trees, forest cover ratio and LAI in 2017 as the response variables. We selected the post-windthrow management schemes (NS, SL, SL_S, SL_P(As) and SL_P(Pg)) and topographical features as the explanatory variables in Model 2 (Table 4, Model 2; average canopy tree height derived using the gamma distribution error with the inverse link function; number of canopy trees derived using the gamma distribution error with log link function; forest cover ratio derived using the Gaussian distribution after the arcsin transformation (arcsin(x^2)); and LAI derived using the gamma distribution error with the inverse link function). We eliminated the average canopy tree height in 1977 from the explanatory variables when choosing the post-windthrow management schemes (NS, SL, SL_S, SL_P(As) and SL_P(Pg)) as one of the explanatory variables because stand development was suggested by Hotta et al. (2020) to restart from “bare land” following scarification, thus thoroughly destroying advanced seedlings. We thus considered the limited influence caused by the average canopy tree height in 1977 after scarification.
After the full model was built, candidate models were generated and ranked based on the ΔAICc values through the ‘dredge’ function in the package ‘MuMIn’ (version 1.43.47). All candidate models up to ΔAICc < 4 were extracted to calculate the average model using the ‘model.avg’ function following Anderson et al. (2001). We displayed the estimate, confidence interval (CI) (95% confidence limit) and relative value importance (RVI) of each explanatory variable from the full model-averaged coefficients derived in the results section. We concluded that a significant influence occurred when the CI of a continuous variable (i.e., the elevation or slope angle) excluded zero. We also used the ‘emmeanfunction in the ‘emmeans’ package through Tukey’s methods to compute the estimated marginal means (EMMs) to provide post hoc contrasts after model averaging. We used this approach to identify whether any significant differences existed among the categorical variables (i.e., the post-windthrow management scheme or slope aspect), as suggested by Sumasgutner et al. (2016).

Results

Forest structures at various post-windthrow management sites

The PCA results (Fig. 2) revealed the forest structure of each study plot 30 years after the windthrow event. Only the first two axes were presented and interpreted due to these axes corresponding to a meaningful proportion (91.98%) of the explained variance. The first principal component (Comp. 1) was correlated with all indexes (average canopy tree height, number of canopy trees, forest cover ratio and LAI) informing the forest structure, whereas the second principal component (Comp. 2) was also correlated with all of these indexes except average canopy tree height. All reference forest (RF) plots were intensively plotted at the rightmost ordination and at the top of the y-axis. We considered higher average canopy tree height, forest cover ratio and LAI values and a lower number of canopy tree values to represent the RF. The windthrow sites mostly plot to the left of the RF. This implies that the windthrow sites correspond to lower canopy tree height and LAI values compared with the RF sites. The 95% confidence ellipse of NS was the nearest ellipse to that of RF. This result means that NS had the forest structure most similar to that of RF among all of the groups. On the other hand, SL_P(Pg) was the farthest from RF, showing a significantly different forest structure from that of RF.

Species composition of the canopy layers at various post-windthrow management sites

The species composition at various post-windthrow management sites among the 6 analyzed groups is shown in Fig. S2.1. Both conifer species and broadleaf species covered nearly 50% of the canopy layer in the RF sites (Fig. 3a, b). Compared with the RF site, significant increases were found in conifer species in SL_P(As) and SL_P(Pg), while dramatic decreases in conifer species were found in SL and SL_S. No significant difference was observed between RF and NS in terms of the conifer or broadleaf cover ratio. On the other hand, shade-tolerant species dominated the canopy layer of RF, which was related to the low pioneer species cover ratio (Fig. 3c, d). Among RF, NS, SL_P(As) and SL_P(Pg), the coverage ratios of pioneer species were almost the same, while the coverage ratio of shade-tolerant species was slightly lower at the NS site than at the other three sites. At the SL site, the number of pioneer species was higher, while that of shade-tolerant species was significantly lower than the corresponding values in the R and NS plots. In contrast, shade-tolerant species covered only 25% of the canopy layer, and the coverage ratio of pioneer species significantly increased in SL_S compared with the other sites.
The NMDS results (Fig. 4) show the canopy-layer species composition at different post-windthrow management groups. As the stress value was 0.120, which was lower than 0.200, we assumed two dimensions would be acceptable when running the NMDS. The plots of the RF sites were located to the left of the x-axis, and the NS sites were adjacent to the x-axis. Although a significant difference in species composition was shown between the two groups, NS was more similar to RF than SL, SL_S or SL_P(Pg) (Table S2.1). The results also explained that shade-tolerant conifer species, such as P. jezoensis and A. sachalinensis, tended to occur more in RF (Fig. S2.1). SL_S was intensively plotted above the y-axis at the same location as the pioneer species Betula. SL occurred to the bottom left and was located between NS and SL_S. Although the species composition among NS, SL and SL_S varied from group to group, SL was more similar to NS and SL_P(As) but differed from SL_S and RF (Table S2.1). The coverage of broadleaf species, especially T. japonica, was higher in SL (Figs. 4, S2.1). SL_P (As) plots were separately plotted at the bottom left of the ordinate. A. sachalinensis appeared to occur in this area, as shown by the NMDS results. SL_P(Pg) was the only group located to the right of the x-axis, and P. glehnii tended to occur more frequently at this site.

Factors affecting the regeneration process after windthrow

Analyzing the canopy tree height derived in 2017 demonstrated that slope aspect significantly affected canopy tree height recovery (Table 5). The predicted average canopy tree heights on the south side of the study plot were significantly higher than those on the east side, as revealed by the post hoc test (Fig. 5, Table S4.1). We also found that forests with higher average canopy tree heights before the windthrow event had lower average canopy tree heights 30 years after the windthrow event (Table 5). However, as the CIs of the post-windthrow management and the slope angle included 0, our results cannot support any significant influence of the analyzed post-windthrow management schemes (NS and SL) or the slope angle on the average canopy tree height recovery after the windthrow event in the natural succession or salvaged sites.
Table 5
Coefficients estimated by the full average model in Model 1 for each metric in relation to the forest structure
Response variable
Explanatory variable
Factor
Mean
95% CI
RVI
Lower
Upper
Post-windthrow forest structure (in 2017)
Average canopy tree height
Intercept
0.184
0.130
0.238
 
Average canopy tree height in 1977
 
0.4 × 10–3
0.2 × 10–3
0.6 × 10–3
0.9
Post-windthrow management
SL
3.8 × 10–3
− 3.3 × 10–3
8.9 × 10–3
0.3
Slope aspect
South
− 4.2 × 10–2
− 5.4 × 10–2
− 3.0 × 10–2
1.0
Slope angle
1.0 × 10–4
− 2.0 × 10–4
4.0 × 10–4
0.1
This model was built through gamma error with the inverse link function, and its estimated results are given on the inverse scale
CI, confidence interval; RVI, relative variable importance; SL, salvage logging
The results of Model 2 suggested that post-windthrow management had a strong influence on the regeneration process related to the average canopy tree height (Table 6). The predicted values derived from the GLM and post hoc processes by estimating the marginal means (Fig. 6) showed no significant difference between NS and SL, while surprisingly higher stem densities were estimated by the GLM (Fig. 6b, Table S6.1) in SL_S, SL_P(As) and SL_P(Pg) compared with those of NS and SL. However, no clear impact was found on the average canopy tree height or LAI due to NS, SL, SL_S or SL_P(As) according to the GLM results (Fig. 6a, d). Although the estimated forest coverage ratios were the same in NS, SL and SL_S, these ratios were significantly lower in SL_P(As) and SL_P(Pg) (Fig. 6c, Table S7.1). The LAI values predicted by the GLM also substantially decreased in SL_P (Pg) compared with those derived for the other sites (Fig. 6d, Table S8.1).
Table 6
Coefficients estimated by the full average model built using Model 2 for each metric related to the forest structure
Response variable
Explanatory variable
Factor
Mean
95% CI
RVI
Lower
Upper
Post-windthrow forest structure (in 2017)
Average canopy tree height
Intercept
2.35 × 10–2
8.12 × 10–3
3.90 × 10–2
 
Post-windthrow management
SL
1.49 × 10–2
9.56 × 10–3
2.03 × 10–2
1.0
SL_S
1.56 × 10–2
9.50 × 10–3
2.17 × 10–2
SL_P(As)
1.46 × 10–2
9.02 × 10–3
2.02 × 10–2
SL_P(Pg)
4.41 × 10–2
3.80 × 10–2
5.04 × 10–2
Elevation
7.56 × 10–5
4.94 × 10–5
1.02 × 10–4
1.0
Slope angle
4.34 × 10–5
− 1.3 × 10–4
2.25 × 10–4
0.2
Number of canopy trees
Intercept
7.74 × 10–3
6.48 × 10–3
9.00 × 10–3
 
Post-windthrow management
SL
− 7.13 × 10–5
− 8.27 × 10–4
6.84 × 10–4
1.0
SL_S
− 3.38 × 10–3
− 4.18 × 10–3
− 2.57 × 10–3
SL_P(As)
− 2.05 × 10–3
− 2.84 × 10–3
− 1.26 × 10–3
SL_P(Pg)
− 3.41 × 10–3
− 4.23 × 10–3
− 2.58 × 10–3
Elevation
1.68 × 10–7
− 1.11 × 10–6
1.44 × 10–6
 
Slope angle
− 5.8 × 10–5
− 1.08 × 10–4
− 8.28 × 10–6
0.7
Forest cover ratio
Intercept
1.51
1.25
1.77
 
Post-windthrow management
SL
− 0.18
− 0.26
− 0.10
1.0
SL_S
− 0.20
− 0.30
− 0.10
SL_P(As)
− 0.32
− 0.42
− 0.32
SL_P(Pg)
− 0.46
− 0.55
− 0.37
Elevation
− 0.7 × 10–3
− 1.2 × 10–3
− 0.2 × 10–3
0.8
Slope angle
2.00 × 10–3
− 2.00 × 10–3
6.00 × 10–3
0.3
LAI
Intercept
0.08
0.01
0.15
 
Post-windthrow management
SL
3.94 × 10–2
1.69 × 10–2
6.19 × 10–2
1.0
SL_S
2.63 × 10–2
1.50 × 10–3
5.11 × 10–2
SL_P(As)
0.04
0.01
0.07
SL_P(Pg)
0.14
0.11
0.17
Elevation
1.9 × 10–4
0.6 × 10–4
3.2 × 10–4
0.8
Slope angle
− 7.0 × 10–4
− 1.9 × 10–3
5.0 × 10–4
0.4
The models corresponding to average canopy tree height and LAI were built through gamma error with the inverse link function, and their estimated results are given on the inverse scale. The model corresponding to the number of canopy trees was built through gamma error with the log link function, and its estimated results are given on the log scale. The model corresponding to the forest cover ratio was built through Gaussian error with the identity link function, and its estimated results are given on the normal scale
CI, confidence interval; RVI, relative variable importance; SL, salvage logging; SL_S, salvage logging + scarification + Quercus crispula sowing; SL_P(As), salvage logging + scarification + Abies sachalinensis planting; SL_P(Pg), salvage logging + scarification + Picea glehnii planting
At the same time, the number of canopy trees, forest cover ratio and LAI were also related to the post-windthrow management scheme (including scarification, planting and seeding). Our results revealed that the average canopy tree height was more likely to decrease at high elevations (Table 6). Similarly, the forest coverage ratio and LAI in 2017 were negatively influenced by elevation. However, although elevation was selected in the final model corresponding to the number of canopy trees, no significant influence was found, as the 95% confidence CI ranged from − 1.11E−06 to 1.44E−06. We concluded that the slope angle did not affect the average canopy tree height, forest cover ratio or LAI for the same reason, but the results implied that higher stem densities could be found more easily in flat landscapes than in steep landscapes (Table 6).

Discussion

We visualized how various factors affect forest structure recovery after a catastrophic windthrow event using aerial photos and LiDAR data. This work represents the first comprehensive study of the impacts of topographic features and pre-windthrow attributes with various post-windthrow management practices on forest regeneration. Of the three hypotheses, (1) and (2) were supported and (3) was partially supported: (1) forest structure will not recover within 30 years after windthrow, (2) forest recovery will be affected not only by salvaging but also pre-windthrow attributes and geographical features, and (3) various post-windthrow management including salvaging will not delay forest recovery, but significantly alter species composition.

Thirty-year impact of catastrophic windthrow events

Our study suggested that the forest cover ratio underwent a full recovery approximately 30 years after the windthrow event. However, the LAI and average canopy tree height (Fig. 2) values of the disturbed areas were still significantly lower than those of the reference area. From these results, we believe that the current forests are still in the recovery process during which they are developing stems (Oliver 1980) even 30 years after the windthrow event. In other research (Götmark and Kiffer 2014) conducted in a hemiboreal zone in Sweden, the average recorded canopy tree height was nearly the same as that reported in this work even 40 years after a windthrow event. Although no significant differences were found in the coverage ratio of the functional types, the nonsalvaged area tended to have a higher coverage ratio of pioneers and broadleaved trees but a lower coverage ratio of shade-tolerant and coniferous trees than the reference (Fig. 3). In addition, we found a divergence of species composition between the nonsalvaged area and reference (Fig. 4). Conifers such as Picea spp. and A. sachalinensis usually dominate undisturbed forests in Hokkaido, northern Japan, while broadleaved trees such as Betula spp. become dominant in windthrow areas due to their fast growth rate in the gap environments (Oliver 1980). Furthermore, conifers could be more severely damaged by wind disturbance because conifers are more susceptible to wind disturbance than broadleaves (Dhubháin and Farrelly 2018). Most conifers might be destroyed during the wind disturbance and recover slowly due to the gap environments created by windthrow, which cause the divergence of species composition between the nonsalvaged and reference areas.

Impact of salvage logging, pre-windthrow attributes and geographic features on forest recovery rate

The forest structure recovery was not evidently changed after 30 years of salvage logging (Fig. 6), which was similar to several previous studies (Royo et al. 2010; Morimoto et al. 2011). However, we found a significant decrease in conifer species but an increase in pioneer species at the salvaged sites compared with the nonsalvaged area (Fig. 3). Similar results were also reported by Orczewska et al. (2019), who observed that the number and coverage of ancient forest indicator species decreased following salvage logging. Salvage logging often severely destroys residual vegetation, including tree saplings (Morimoto et al. 2011), which can largely affect the subsequent recovery process. Indeed, Kurahashi et al. (1986) reported that approximately 25% of saplings were destroyed by salvage logging after windthrow at our study site.
However, several geographic features and the canopy tree height before windthrow actually affect the forest regeneration rate. We found that the slope aspect affected the growth of individual trees in the naturally regenerating area (Table 5). The south-facing aspect, which corresponds to increased light availability in the Northern Hemisphere, facilitates the growth of light-demanding species in disturbed areas (Vodde et al. 2010). The slope aspect can also affect the abundance of advanced regeneration in forest floors; similarly, Owari (2013) showed that A. sachaliensis saplings were abundant on southwestern slopes. Regeneration from saplings enables fast recovery of canopy height after wind disturbance, which could cause greater heights on south-facing slopes (Fig. 5). Limited resources and low temperatures at high elevations (Coomes and Allen 2007; Potapov et al. 2020) can be the main reasons for the slow regeneration process observed at high elevations, as seed erosion occurring on steep slopes (Barij et al. 2007) accounted for a lower number of canopy trees compared with flat areas (Table 6). Furthermore, we found that the canopy tree height in 1977 had a negative influence on the canopy tree height in 2017 (Table 5). This result indicates that the average post-windthrow canopy heights tended to be higher in the forests where the average canopy tree height was lower before the windthrow event. As the windthrow risk increases with the growth of the canopy tree height (Oliver 1980; Dhubháin and Farrelly 2018), the forests in which canopy heights were lower have the advantage of high wind resistance. The stands where more surviving trees remain due to the lower windthrow risk will attain a rapid recovery of average canopy tree height.

The impact of scarification, planting and sowing on species composition and factors affecting forest recovery rate

Clear increases in the coverage and abundance of pioneer species, such as Betula spp., were found in the sites that underwent scarification (Figs. 3, 4, S2.1). This is a natural result of scarification, which thoroughly removes residual vegetation, including dwarf bamboo and tree saplings, and thus creates homogeneous open sites. Betula spp. thus occur frequently, dominating secondary forests and forming almost pure stands following scarification due to their high growth rates and reproductive abilities (Yamazaki and Yoshida 2020). A clear increase in pioneer species such as Betula spp. was also found in the sites with Q. crispula seeding, similar to the sites with scarification (Figs. 3, 4). This indicates that the establishment of Q. crispula after scarification was clearly unsuccessful at our study site. The capacity of oak to become established might be reduced because scarification creates an increased light intensity and dry conditions (Wetzel and Burgess 2001; Asada et al. 2017), while Betula spp. gain an advantage as light-demanding species. Although previous research mentioned that scarification contributed to the successful establishment of oak following direct seeding (Birkedal et al. 2010), seeding Q. crispula after scarification might be unsuitable at our study site.
Planting directly can lead to an identically high number of canopy trees recovering (Fig. 6b), while it might also hamper the natural regeneration process (Thorn et al. 2017). Planting can result in a huge decrease in species diversity (Newbold et al. 2015). Species composition of the canopy layer was shifted in the P. glehnii planting plots, which were mostly dominated by P. glehnii (Fig. 4) and the A. sachalinensis planting plots were dominated by planted A. sachalinensis, whereas the species composition of SL_P(As) was more similar to the reference and natural succession sites (Table S2.1). The coverage of unplanted species and LAI in the A. sachalinensis planting area also tended to be slightly higher than those in the P. glehnii planting area (Figs. 6d, S2.1). Okamura et al. (1995) reported that broadleaved species mostly regenerated on piles of debris, where no trees were planted, in the P. glehnii planting area, whereas many broadleaved species invaded among planted trees in the A. sachalinensis planting area, suggesting that P. glehnii plantations are exclusive against other species. Although structure indicators except the number of canopy trees attained similar levels to NS and SL in the A. sachalinensis planting plots, those in the P. glehnii planting plots were much lower than those in the other plots (Fig. 6a, c, d). This can be because of the slow growth rate of P. glehnii.
Among all geographic factors, elevation in response to a harsh environment negatively affected the recovery rate after scarification and planting after salvage logging (Table 6). However, unlike in the natural succession area, the slope aspect was not selected as a significant factor in Model 2 (Table 6). The possible reason for the difference is that the scarification has thoroughly removed residual vegetation, including advanced regeneration. Such homogeneous conditions created by scarification might make the effects of the slope aspect unclear.

Conclusions

The landscape-level forest recovery process 30 years following a windthrow event was identified in this study using aerial photos and LiDAR data. Although the canopy coverage ratios of the forests in the disturbed area underwent full recoveries, the forest sites were still in the stem-exclusion stage and required more time to undergo full height and LAI recoveries. No influence of salvage logging was found on the forest structure recovery process. However, we noticed a trend in which the composition of broadleaved tree species increased following salvage logging. Scarification increased the number of canopy trees but changed the species composition due to the regeneration of Betula species at a high value. Seeding had little effect after scarification because the oak species sown were not successfully established. Planting reduced the chance for other species to establish, thus resulting in a different species composition in the forest canopy. On the other hand, our study verified the influence of geographical factors and pre-windthrow attributes on the forest regeneration process. The south-facing aspect was found to have a positive impact on natural regeneration in hemiboreal forests, but this influence was limited in the scarified and planted areas. The high elevation and steep area of the forest sites led to slow regeneration after the windthrow event and management practices. The higher the average canopy tree height was before the windthrow event, the lower the mean height the forest recovered to after the windthrow event.
Our findings provide implications for management schemes in hemiboreal forests facing windthrow. We suggest passive restoration, ‘doing nothing’ after windthrow, to maintain the number of conifer species in hemiboreal forests. It is highly recommended in the south aspect area and was found to have a positive impact on natural regeneration. In addition, we also recommend passive restoration at high elevations and steep landscapes because of the high cost, limited accessibility and counterproductivity toward the recovery rate. On the other hand, it is suitable to conduct planting or scarification in flat areas with low elevations to obtain a number of commercial trees, such as Betula or Abies species, in a short time after windthrow. As the regeneration of Betula after the scarifcation will greatly impair the impact of sowing, we do not recommend sowing activities after scarification in our study area.
Due to the limitation of the method itself, we could only crudely estimate the LAI through LiDAR data and obtain a rough image of species composition using aerial photos. Further efforts, such as ground surveys or applying machine learning technologies, are necessary to obtain more accurate data with a high efficiency from aerial photos and LiDAR. We found an impact of pre-windthrow attributes, such as canopy tree height, on the regeneration process, possibly because it may affect the initial stage of regeneration directly after windthrow. However, we cannot prove this due to missing data. A long-term monitoring test is thus crucial to have both directly before and after windthrow events to confirm this relationship and determine further potential risks of applying post-windthrow management practices to hemiboreal forests in Hokkaido, northern Japan.

Acknowledgements

We wish to thank Mr. Nakane (PHOTEC Co., Ltd., Japan) for the technical support regarding the Stereo Viewer Pro software.

Declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
Appendix

Supplementary Information

Below is the link to the electronic supplementary material.
Literature
go back to reference Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373CrossRef Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373CrossRef
go back to reference Aoyama K, Yoshida T, Harada A, Noguchi M, Miya H, Shibata H (2011) Changes in carbon stock following soil scarification of non-wooded stands in Hokkaido, Northern Japan. J for Res 16:35–45CrossRef Aoyama K, Yoshida T, Harada A, Noguchi M, Miya H, Shibata H (2011) Changes in carbon stock following soil scarification of non-wooded stands in Hokkaido, Northern Japan. J for Res 16:35–45CrossRef
go back to reference Asada I, Yamazaki H, Yoshida T (2017) Spatial patterns of oak (Quercus crispula) regeneration on scarification site around a conspecific overstory tree. For Ecol Manag 393:81–88CrossRef Asada I, Yamazaki H, Yoshida T (2017) Spatial patterns of oak (Quercus crispula) regeneration on scarification site around a conspecific overstory tree. For Ecol Manag 393:81–88CrossRef
go back to reference Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Higgins M, Farfan W, Llactayo W, Silman MR (2014) Targeted carbon conservation at national scales with high-resolution monitoring. Proc Natl Acad Sci USA 111:E5016–E5022PubMedPubMedCentralCrossRef Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Higgins M, Farfan W, Llactayo W, Silman MR (2014) Targeted carbon conservation at national scales with high-resolution monitoring. Proc Natl Acad Sci USA 111:E5016–E5022PubMedPubMedCentralCrossRef
go back to reference Barij N, Stokes A, Bogaard T, Van Beek R (2007) Does growing on a slope affect tree xylem structure and water relations? Tree Physiol 27:757–764PubMedCrossRef Barij N, Stokes A, Bogaard T, Van Beek R (2007) Does growing on a slope affect tree xylem structure and water relations? Tree Physiol 27:757–764PubMedCrossRef
go back to reference Birkedal M, Löf M, Olsson GE, Bergsten U (2010) Effects of granivorous rodents on direct seeding of oak and beech in relation to site preparation and sowing date. For Ecol Manag 259:2382–2389CrossRef Birkedal M, Löf M, Olsson GE, Bergsten U (2010) Effects of granivorous rodents on direct seeding of oak and beech in relation to site preparation and sowing date. For Ecol Manag 259:2382–2389CrossRef
go back to reference Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097CrossRef Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097CrossRef
go back to reference Franklin JF, Van Pelt R (2004) Spatial aspects of structural complexity in old-growth forests. J for 102:22–28 Franklin JF, Van Pelt R (2004) Spatial aspects of structural complexity in old-growth forests. J for 102:22–28
go back to reference Gniazdowski Z (2017) New interpretation of principal components analysis. Zeszyty Naukowe WWSI 11:43–65 Gniazdowski Z (2017) New interpretation of principal components analysis. Zeszyty Naukowe WWSI 11:43–65
go back to reference Götmark F, Kiffer C (2014) Regeneration of oaks (Quercus robur/Q. petraea) and three other tree species during long-term succession after catastrophic disturbance (windthrow). Plant Ecol 215:1067–1080CrossRef Götmark F, Kiffer C (2014) Regeneration of oaks (Quercus robur/Q. petraea) and three other tree species during long-term succession after catastrophic disturbance (windthrow). Plant Ecol 215:1067–1080CrossRef
go back to reference Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ (2011) A review of the regeneration dynamics of north American boreal forest tree species. Can J for Res 29:824–839CrossRef Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ (2011) A review of the regeneration dynamics of north American boreal forest tree species. Can J for Res 29:824–839CrossRef
go back to reference Gregow H, Laaksonen A, Alper ME (2017) Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci Rep 7:46397PubMedPubMedCentralCrossRef Gregow H, Laaksonen A, Alper ME (2017) Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci Rep 7:46397PubMedPubMedCentralCrossRef
go back to reference Hanada N, Shibuya M, Saito H, Takahashi K (2006) Regeneration process of broadleaved trees in planted Larix kaempferi forests. J Jpn for Soc 88:1–7CrossRef Hanada N, Shibuya M, Saito H, Takahashi K (2006) Regeneration process of broadleaved trees in planted Larix kaempferi forests. J Jpn for Soc 88:1–7CrossRef
go back to reference Hasler R (1982) Net photosynthesis and transpiration of Pinus montana on east and north facing slopes at alpine timberline. Oecologia 54:14–22PubMedCrossRef Hasler R (1982) Net photosynthesis and transpiration of Pinus montana on east and north facing slopes at alpine timberline. Oecologia 54:14–22PubMedCrossRef
go back to reference Hautier Y, Isbell F, Borer ET et al (2018) Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat Ecol Evol 2:50–56PubMedCrossRef Hautier Y, Isbell F, Borer ET et al (2018) Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat Ecol Evol 2:50–56PubMedCrossRef
go back to reference Hérault B, Piponiot C (2018) Key drivers of ecosystem recovery after disturbance in a neotropical forest. For Ecosyst 5:2CrossRef Hérault B, Piponiot C (2018) Key drivers of ecosystem recovery after disturbance in a neotropical forest. For Ecosyst 5:2CrossRef
go back to reference Hotta W, Morimoto J, Inoue T, Suzuki SN, Umebayashi T, Owari T, Shibata H, Ishibashi S, Hara T, Nakamura F (2020) Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan. For Ecol Manag 468:118169CrossRef Hotta W, Morimoto J, Inoue T, Suzuki SN, Umebayashi T, Owari T, Shibata H, Ishibashi S, Hara T, Nakamura F (2020) Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan. For Ecol Manag 468:118169CrossRef
go back to reference Hu S, Ma J, Shugart HH, Yan X (2018) Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model. Environ Res Lett 13(3):034027CrossRef Hu S, Ma J, Shugart HH, Yan X (2018) Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model. Environ Res Lett 13(3):034027CrossRef
go back to reference Jayathunga S, Owari T, Tsuyuki S (2018) Analysis of forest structural complexity using airborne LiDAR data and aerial photography in a mixed conifer–broadleaf forest in northern Japan. J for Res 29:479–493CrossRef Jayathunga S, Owari T, Tsuyuki S (2018) Analysis of forest structural complexity using airborne LiDAR data and aerial photography in a mixed conifer–broadleaf forest in northern Japan. J for Res 29:479–493CrossRef
go back to reference Jin S, Su Y, Song S et al (2020) Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level. Plant Methods 16:69PubMedPubMedCentralCrossRef Jin S, Su Y, Song S et al (2020) Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level. Plant Methods 16:69PubMedPubMedCentralCrossRef
go back to reference Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378CrossRef Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378CrossRef
go back to reference Kamimura K, Gardiner B, Kato A, Hiroshima T, Shiraishi N (2008) Developing a decision support approach to reduce wind damage risk—a case study on sugi (Cryptomeria japonica (L.f.) D.Don) forests in Japan. Forestry 81:429–445CrossRef Kamimura K, Gardiner B, Kato A, Hiroshima T, Shiraishi N (2008) Developing a decision support approach to reduce wind damage risk—a case study on sugi (Cryptomeria japonica (L.f.) D.Don) forests in Japan. Forestry 81:429–445CrossRef
go back to reference Korpela IS, Tokola TE (2006) Potential of aerial image-based monoscopic and multiview single-tree forest inventory: a simulation approach. For Sci 52(2):136–147 Korpela IS, Tokola TE (2006) Potential of aerial image-based monoscopic and multiview single-tree forest inventory: a simulation approach. For Sci 52(2):136–147
go back to reference Kosugi R, Shibuya M, Ishibashi S (2016) Sixty-year post-windthrow study of stand dynamics in two natural forests differing in pre-disturbance composition. Ecosphere 7:e01571CrossRef Kosugi R, Shibuya M, Ishibashi S (2016) Sixty-year post-windthrow study of stand dynamics in two natural forests differing in pre-disturbance composition. Ecosphere 7:e01571CrossRef
go back to reference Kurahashi A, Matsuura T, Ogasawara S, Hamaya T (1986) Studies on the stand structure and family composition of boreal coniferous forests of selective-cutting type in the University Forest in Hokkaido heavily damaged by the typhoon No. 15 in 1981. Bull Univ Tokyo for 75:61–86 Kurahashi A, Matsuura T, Ogasawara S, Hamaya T (1986) Studies on the stand structure and family composition of boreal coniferous forests of selective-cutting type in the University Forest in Hokkaido heavily damaged by the typhoon No. 15 in 1981. Bull Univ Tokyo for 75:61–86
go back to reference Laapas M, Lehtonen I, Venäläinen A, Peltola HM (2019) The 10-year return levels of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland. Climate 7:62CrossRef Laapas M, Lehtonen I, Venäläinen A, Peltola HM (2019) The 10-year return levels of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland. Climate 7:62CrossRef
go back to reference Li Y, Guo Q, Tao S, Zheng G, Zhao K, Xue B, Su Y (2016) Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Can J Remote Sens 42:719–729CrossRef Li Y, Guo Q, Tao S, Zheng G, Zhao K, Xue B, Su Y (2016) Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Can J Remote Sens 42:719–729CrossRef
go back to reference Maltamo M, Packalén P, Yu X, Eerikäinen K, Hyyppä J, Pitkänen J (2005) Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For Ecol Manag 216(1–3):41–50CrossRef Maltamo M, Packalén P, Yu X, Eerikäinen K, Hyyppä J, Pitkänen J (2005) Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For Ecol Manag 216(1–3):41–50CrossRef
go back to reference Moe KT, Owari T, Furuya N, Hiroshima T, Morimoto J (2020) Application of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in northern Japanese mixed-wood forests. Remote Sens 12:2865CrossRef Moe KT, Owari T, Furuya N, Hiroshima T, Morimoto J (2020) Application of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in northern Japanese mixed-wood forests. Remote Sens 12:2865CrossRef
go back to reference Morimoto J, Morimoto M, Nakamura F (2011) Initial vegetation recovery following a blowdown of a conifer plantation in monsoonal east Asia: impacts of legacy retention, salvaging, site preparation, and weeding. For Ecol Manag 261:1353–1361CrossRef Morimoto J, Morimoto M, Nakamura F (2011) Initial vegetation recovery following a blowdown of a conifer plantation in monsoonal east Asia: impacts of legacy retention, salvaging, site preparation, and weeding. For Ecol Manag 261:1353–1361CrossRef
go back to reference Morimoto J, Umebayashi T, Suzuki SN, Owari T, Nishimura N, Ishibashi S, Shibuya M, Hara T (2019) Long-term effects of salvage logging after a catastrophic wind disturbance on forest structure in northern Japan. Landsc Ecol Eng 15:133–141CrossRef Morimoto J, Umebayashi T, Suzuki SN, Owari T, Nishimura N, Ishibashi S, Shibuya M, Hara T (2019) Long-term effects of salvage logging after a catastrophic wind disturbance on forest structure in northern Japan. Landsc Ecol Eng 15:133–141CrossRef
go back to reference Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260CrossRef Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260CrossRef
go back to reference Nayak S, Takemi T (2019) Dynamical downscaling of typhoon lionrock (2016) for assessing the resulting hazards under global warming. J Meteorol Soc Jpn Ser II 97:69–88CrossRef Nayak S, Takemi T (2019) Dynamical downscaling of typhoon lionrock (2016) for assessing the resulting hazards under global warming. J Meteorol Soc Jpn Ser II 97:69–88CrossRef
go back to reference Nilsson U, Örlander G, Karlsson M (2006) Establishing mixed forests in Sweden by combining planting and natural regeneration—effects of shelterwoods and scarification. For Ecol Manag 237:301–311CrossRef Nilsson U, Örlander G, Karlsson M (2006) Establishing mixed forests in Sweden by combining planting and natural regeneration—effects of shelterwoods and scarification. For Ecol Manag 237:301–311CrossRef
go back to reference Okamura K, Takahashi Y, Ohta S, Kawahara S, Shima S, Hirata M, Yamamoto H (1995) Recovery of forest disturbed by a typhoon in 1981: results of planting and natural regeneration after 11 years. Trans Meet Hokkaido Branch Jpn for Soc 43:189–191 (in Japanese, the title was translated from Japanese) Okamura K, Takahashi Y, Ohta S, Kawahara S, Shima S, Hirata M, Yamamoto H (1995) Recovery of forest disturbed by a typhoon in 1981: results of planting and natural regeneration after 11 years. Trans Meet Hokkaido Branch Jpn for Soc 43:189–191 (in Japanese, the title was translated from Japanese)
go back to reference Oliver CD (1980) Forest development in north America following major disturbances. For Ecol Manag 3:153–168CrossRef Oliver CD (1980) Forest development in north America following major disturbances. For Ecol Manag 3:153–168CrossRef
go back to reference Orczewska A, Czortek P, Jaroszewicz B (2019) The impact of salvage logging on herb layer species composition and plant community recovery in Białowieża forest. Biodivers Conserv 28:3407–3428CrossRef Orczewska A, Czortek P, Jaroszewicz B (2019) The impact of salvage logging on herb layer species composition and plant community recovery in Białowieża forest. Biodivers Conserv 28:3407–3428CrossRef
go back to reference Owari T (2013) Relationships between the abundance of Abies sachalinensis juveniles and site conditions in selection forests of Central Hokkaido, Japan. FORMATH 12:1–20CrossRef Owari T (2013) Relationships between the abundance of Abies sachalinensis juveniles and site conditions in selection forests of Central Hokkaido, Japan. FORMATH 12:1–20CrossRef
go back to reference Owari T, Matsui M, Inukai H, Kaji M (2011) Stand structure and geographic conditions of natural selection forests in Central Hokkaido, northern Japan. J for Plan 16:207–214 Owari T, Matsui M, Inukai H, Kaji M (2011) Stand structure and geographic conditions of natural selection forests in Central Hokkaido, northern Japan. J for Plan 16:207–214
go back to reference Potapov P, Li X, Hernandez-Serna A et al (2020) Mapping global forest canopy height through integration of GEDI and landsat data. Remote Sens Environ 253:112165CrossRef Potapov P, Li X, Hernandez-Serna A et al (2020) Mapping global forest canopy height through integration of GEDI and landsat data. Remote Sens Environ 253:112165CrossRef
go back to reference Rammig A, Fahse L, Bebi P, Bugmann H (2007) Wind disturbance in mountain forests: simulating the impact of management strategies, seed supply, and ungulate browsing on forest succession. For Ecol Manag 242:142–154 CrossRef Rammig A, Fahse L, Bebi P, Bugmann H (2007) Wind disturbance in mountain forests: simulating the impact of management strategies, seed supply, and ungulate browsing on forest succession. For Ecol Manag 242:142–154 CrossRef
go back to reference Rich RL, Frelich LE, Reich PB (2007) Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J Ecol 95:1261–1273CrossRef Rich RL, Frelich LE, Reich PB (2007) Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J Ecol 95:1261–1273CrossRef
go back to reference Royo AA, Collins R, Adams MB, Kirschbaum C, Carson WP (2010) Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91:93–105PubMedCrossRef Royo AA, Collins R, Adams MB, Kirschbaum C, Carson WP (2010) Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91:93–105PubMedCrossRef
go back to reference Sato T, Yamazaki H, Yoshida T (2017) Extending effect of a wind disturbance: mortality of Abies sachalinensis following a strong typhoon in a natural mixed forest. J for Res 22:336–342CrossRef Sato T, Yamazaki H, Yoshida T (2017) Extending effect of a wind disturbance: mortality of Abies sachalinensis following a strong typhoon in a natural mixed forest. J for Res 22:336–342CrossRef
go back to reference Seidl R, Rammer W, Spies TA (2014) Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl 24:2063–2077PubMedPubMedCentralCrossRef Seidl R, Rammer W, Spies TA (2014) Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl 24:2063–2077PubMedPubMedCentralCrossRef
go back to reference Senf C, Müller J, Seidl R (2019) Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc Ecol 34(12):2837–2850CrossRef Senf C, Müller J, Seidl R (2019) Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc Ecol 34(12):2837–2850CrossRef
go back to reference Shi Y, Skidmore A, Heurich M (2020) Improving LIDAR-based tree species mapping in Central European mixed forests using multitemporal digital aerial colour-infrared photographs. Int J Appl Ear Observ Geoinform 84:0303–2434 Shi Y, Skidmore A, Heurich M (2020) Improving LIDAR-based tree species mapping in Central European mixed forests using multitemporal digital aerial colour-infrared photographs. Int J Appl Ear Observ Geoinform 84:0303–2434
go back to reference Shimizu K et al (2014) Estimation of aboveground biomass using manual stereo viewing of digital aerial photographs in tropical seasonal forest. Land 3(4):1270–1283CrossRef Shimizu K et al (2014) Estimation of aboveground biomass using manual stereo viewing of digital aerial photographs in tropical seasonal forest. Land 3(4):1270–1283CrossRef
go back to reference St-Onge B, Jumelet J, Cobello M, Véga C (2004) Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J for Res 34(10):2122–2130CrossRef St-Onge B, Jumelet J, Cobello M, Véga C (2004) Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J for Res 34(10):2122–2130CrossRef
go back to reference Sumasgutner P, Tate GJ, Koeslag A, Amar A (2016) Family morph matters: factors determining survival and recruitment in a long-lived polymorphic raptor. J Anim Ecol 85:1043–1055PubMedCrossRef Sumasgutner P, Tate GJ, Koeslag A, Amar A (2016) Family morph matters: factors determining survival and recruitment in a long-lived polymorphic raptor. J Anim Ecol 85:1043–1055PubMedCrossRef
go back to reference Szwagrzyk J, Maciejewski Z, Maciejewska E, Tomski A, Gazda A (2018) Forest recovery in set-aside windthrow is facilitated by fast growth of advance regeneration. Ann for Sci 75:80CrossRef Szwagrzyk J, Maciejewski Z, Maciejewska E, Tomski A, Gazda A (2018) Forest recovery in set-aside windthrow is facilitated by fast growth of advance regeneration. Ann for Sci 75:80CrossRef
go back to reference Taeroe AT, de Koning JHC, Löf M, Tolvanen A, Heiðarsson L, Raulund-Rasmussen K (2019) Recovery of temperate and boreal forests after windthrow and the impacts of salvage logging. A quantitative review. For Ecol Manag 446:304–316CrossRef Taeroe AT, de Koning JHC, Löf M, Tolvanen A, Heiðarsson L, Raulund-Rasmussen K (2019) Recovery of temperate and boreal forests after windthrow and the impacts of salvage logging. A quantitative review. For Ecol Manag 446:304–316CrossRef
go back to reference Thorn S, Bassler C, Svoboda M, Muller J (2017) Effects of natural disturbances and salvage logging on biodiversity—lessons from the Bohemian Forest. For Ecol Manag 388:113–119CrossRef Thorn S, Bassler C, Svoboda M, Muller J (2017) Effects of natural disturbances and salvage logging on biodiversity—lessons from the Bohemian Forest. For Ecol Manag 388:113–119CrossRef
go back to reference Tudoroiu M, Eccel E, Gioli B, Gianelle D, Schume H, Genesio L, Miglietta F (2016) Negative elevation-dependent warming trend in the Eastern Alps. Environ Res Lett 11:044021CrossRef Tudoroiu M, Eccel E, Gioli B, Gianelle D, Schume H, Genesio L, Miglietta F (2016) Negative elevation-dependent warming trend in the Eastern Alps. Environ Res Lett 11:044021CrossRef
go back to reference Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Bürgi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric for Meteorol 150:47–55CrossRef Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Bürgi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric for Meteorol 150:47–55CrossRef
go back to reference Vodde F, Jõgiste K, Gruson L, Ilisson T, Köster K, Stanturf JA (2010) Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. J for Res 15:55–64CrossRef Vodde F, Jõgiste K, Gruson L, Ilisson T, Köster K, Stanturf JA (2010) Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. J for Res 15:55–64CrossRef
go back to reference Wetzel S, Burgess D (2001) Understorey environment and vegetation response after partial cutting and site preparation in Pinus strobus L. stands. For Ecol Manag 151:43–59CrossRef Wetzel S, Burgess D (2001) Understorey environment and vegetation response after partial cutting and site preparation in Pinus strobus L. stands. For Ecol Manag 151:43–59CrossRef
go back to reference Yamazaki H, Yoshida T (2018) Significance and limitation of scarification treatments on early establishment of Betula maximowicziana, a tree species producing buried seeds: effects of surface soil retention. J for Res 23:166–172CrossRef Yamazaki H, Yoshida T (2018) Significance and limitation of scarification treatments on early establishment of Betula maximowicziana, a tree species producing buried seeds: effects of surface soil retention. J for Res 23:166–172CrossRef
go back to reference Yamazaki H, Yoshida T (2020) Various scarification treatments produce different regeneration potentials for trees and forbs through changing soil properties. J for Res 25:41–50CrossRef Yamazaki H, Yoshida T (2020) Various scarification treatments produce different regeneration potentials for trees and forbs through changing soil properties. J for Res 25:41–50CrossRef
Metadata
Title
The 30-year impact of post-windthrow management on the forest regeneration process in northern Japan
Authors
Jing Li
Junko Morimoto
Wataru Hotta
Satoshi N. Suzuki
Toshiaki Owari
Motoko Toyoshima
Futoshi Nakamura
Publication date
30-01-2023
Publisher
Springer Japan
Published in
Landscape and Ecological Engineering / Issue 2/2023
Print ISSN: 1860-1871
Electronic ISSN: 1860-188X
DOI
https://doi.org/10.1007/s11355-023-00539-9