Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2022

15-02-2022 | Research Article

The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis

Authors: Bing Hu, Zhizhi Wang, Minbo Xu, Dongmei Zhang, Dingjiang Wang

Published in: Cognitive Neurodynamics | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Different from many previous theoretical studies, this paper explores the regulatory mechanism of the spike and wave discharges (SWDs) in the reticular thalamic nucleus (TRN) by a dynamic computational model. We observe that the SWDs appears in the TRN by changing the coupling weights and delays in the thalamocortical circuit. The abundant poly-spikes wave discharges is also induced when the delay increases to large enough. These discharges can be inhibited by tuning the inhibitory output from the basal ganglia to the thalamus. The mechanisms of these waves can be explained in this model together with simulation results, which are different from the mechanisms in the cortex. The TRN is an important target in treating epilepsy, and the results may be a theoretical evidence for experimental study in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arakaki T, Mahon S, Charpier S et al (2016) The role of striatal feedforward inhibition in the maintenance of absence seizures. J Neurosci 36(37):9618–9632PubMedPubMedCentralCrossRef Arakaki T, Mahon S, Charpier S et al (2016) The role of striatal feedforward inhibition in the maintenance of absence seizures. J Neurosci 36(37):9618–9632PubMedPubMedCentralCrossRef
go back to reference Assenza G, Lanzone J, Dubbioso R et al (2020) Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy. Clin Neurophysiol 131(8):2041–2046PubMedCrossRef Assenza G, Lanzone J, Dubbioso R et al (2020) Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy. Clin Neurophysiol 131(8):2041–2046PubMedCrossRef
go back to reference Bagshaw AP, Hale JR, Campos BM et al (2017) Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. Neuro Image Clin 16:52–57 Bagshaw AP, Hale JR, Campos BM et al (2017) Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. Neuro Image Clin 16:52–57
go back to reference Barad Z(2017) Excitatory ionotropic glutamate receptor expression in the reticular thalamic nucleus in a mouse model of absence epilepsy. University of Otago Barad Z(2017) Excitatory ionotropic glutamate receptor expression in the reticular thalamic nucleus in a mouse model of absence epilepsy. University of Otago
go back to reference Biraben A, Semah F, Ribeiro MJ et al (2004) PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology 63(1):73–77PubMedCrossRef Biraben A, Semah F, Ribeiro MJ et al (2004) PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology 63(1):73–77PubMedCrossRef
go back to reference Bomben VC, Aiba I, Qian J et al (2016) Isolated P/Q calcium channel deletion in layer VI corticothalamic neurons generates absence epilepsy. J Neurosci 36(2):405–418PubMedPubMedCentralCrossRef Bomben VC, Aiba I, Qian J et al (2016) Isolated P/Q calcium channel deletion in layer VI corticothalamic neurons generates absence epilepsy. J Neurosci 36(2):405–418PubMedPubMedCentralCrossRef
go back to reference Bouilleret V, Semah F, Chassoux F et al (2008) Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology 70(3):177–184PubMedCrossRef Bouilleret V, Semah F, Chassoux F et al (2008) Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology 70(3):177–184PubMedCrossRef
go back to reference Breakspear M, Roberts JA, Terry JR et al (2005) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313PubMedCrossRef Breakspear M, Roberts JA, Terry JR et al (2005) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313PubMedCrossRef
go back to reference Chang WJ, Chang WP, Shyu BC (2017) Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol Brain 10(1):1–15CrossRef Chang WJ, Chang WP, Shyu BC (2017) Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol Brain 10(1):1–15CrossRef
go back to reference Chen M, Guo D, Li M et al (2015) Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Comput Biol 11(10):e1004539PubMedPubMedCentralCrossRef Chen M, Guo D, Li M et al (2015) Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Comput Biol 11(10):e1004539PubMedPubMedCentralCrossRef
go back to reference Chen M, Guo D, Wang T et al (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10(3):e1003495PubMedPubMedCentralCrossRef Chen M, Guo D, Wang T et al (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10(3):e1003495PubMedPubMedCentralCrossRef
go back to reference Chen M, Wu S, Xia Y et al (2016) Possible critical roles of Globus pallidus externa in controlling absence seizures. Adv Cogn Neurodyn. Springer, Singapore, pp 633–640CrossRef Chen M, Wu S, Xia Y et al (2016) Possible critical roles of Globus pallidus externa in controlling absence seizures. Adv Cogn Neurodyn. Springer, Singapore, pp 633–640CrossRef
go back to reference Chiriboga ASL, Siegel JL, Tatum WO et al (2017) Striking basal ganglia imaging abnormalities in LGI1 ab faciobrachial dystonic seizures. Neurol Neuroimmunol 4(3):e336CrossRef Chiriboga ASL, Siegel JL, Tatum WO et al (2017) Striking basal ganglia imaging abnormalities in LGI1 ab faciobrachial dystonic seizures. Neurol Neuroimmunol 4(3):e336CrossRef
go back to reference Currie SP, Luz LL, Booker SA et al (2017) Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAA \(\gamma\)2 R43Q mouse model of absence epilepsy. Epilepsia 58(4):597–607PubMedPubMedCentralCrossRef Currie SP, Luz LL, Booker SA et al (2017) Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAA \(\gamma\)2 R43Q mouse model of absence epilepsy. Epilepsia 58(4):597–607PubMedPubMedCentralCrossRef
go back to reference Da Silva FL, Blanes W, Kalitzin SN et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(s12):72–83CrossRef Da Silva FL, Blanes W, Kalitzin SN et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(s12):72–83CrossRef
go back to reference Dayani MA, Daneshi A, Ahadi R et al (2017) Diagnostic value of magnetic resonance spectroscopy in morphometrical analysis of basal ganglia in patients with idiopathic generalized epilepsy. Res J Pharm Technol 10(8):2693–2696CrossRef Dayani MA, Daneshi A, Ahadi R et al (2017) Diagnostic value of magnetic resonance spectroscopy in morphometrical analysis of basal ganglia in patients with idiopathic generalized epilepsy. Res J Pharm Technol 10(8):2693–2696CrossRef
go back to reference Deeba F, Sanz-Leon P, Robinson PA (2019) Unified dynamics of interictal events and absence seizures. Phys Rev E 100(2):022407PubMedCrossRef Deeba F, Sanz-Leon P, Robinson PA (2019) Unified dynamics of interictal events and absence seizures. Phys Rev E 100(2):022407PubMedCrossRef
go back to reference Deransart C, Depaulis A (2002) The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord 4(3):61–72 Deransart C, Depaulis A (2002) The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord 4(3):61–72
go back to reference Deransart C, Vercueil L, Marescaux C et al (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32(1):213–223PubMedCrossRef Deransart C, Vercueil L, Marescaux C et al (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32(1):213–223PubMedCrossRef
go back to reference Dervinis M (2016) Pathophysiological mechanisms of absence epilepsy: a computational modelling study. Cardiff University Dervinis M (2016) Pathophysiological mechanisms of absence epilepsy: a computational modelling study. Cardiff University
go back to reference Destexhe A (1999) Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur J Neurosci 11(6):2175–2181PubMedCrossRef Destexhe A (1999) Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur J Neurosci 11(6):2175–2181PubMedCrossRef
go back to reference Dong L, Wang P, Peng R et al (2016) Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study. Epilepsy Res 128:12–20PubMedCrossRef Dong L, Wang P, Peng R et al (2016) Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study. Epilepsy Res 128:12–20PubMedCrossRef
go back to reference Du T, Chen Y, Shi L et al (2021) Deep brain stimulation of the anterior nuclei of the thalamus relieves basal ganglia dysfunction in monkeys with temporal lobe epilepsy. CNS Neurosci Ther 27(3):341–351PubMedCrossRef Du T, Chen Y, Shi L et al (2021) Deep brain stimulation of the anterior nuclei of the thalamus relieves basal ganglia dysfunction in monkeys with temporal lobe epilepsy. CNS Neurosci Ther 27(3):341–351PubMedCrossRef
go back to reference Ernst WL, Zhang Y, Yoo JW et al (2009) Genetic enhancement of thalamocortical network activity by elevating \(\alpha\)1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29(6):1615–1625PubMedPubMedCentralCrossRef Ernst WL, Zhang Y, Yoo JW et al (2009) Genetic enhancement of thalamocortical network activity by elevating \(\alpha\)1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29(6):1615–1625PubMedPubMedCentralCrossRef
go back to reference Ferrari A, Renzetti P, Serrati C et al (2017) Serial magnetic resonance study in super refractory status epilepticus: progressive involvement of striatum and pallidus is a possible predictive marker of negative outcome. Neurol Sci 38(8):1513–1516PubMedCrossRef Ferrari A, Renzetti P, Serrati C et al (2017) Serial magnetic resonance study in super refractory status epilepticus: progressive involvement of striatum and pallidus is a possible predictive marker of negative outcome. Neurol Sci 38(8):1513–1516PubMedCrossRef
go back to reference Gerardo CM, Manuel MMV (2020) The thalamic reticular nucleus: a common nucleus of neuropsychiatric diseases and deep brain stimulation. J Clin Neurosci 73:1–7PubMedCrossRef Gerardo CM, Manuel MMV (2020) The thalamic reticular nucleus: a common nucleus of neuropsychiatric diseases and deep brain stimulation. J Clin Neurosci 73:1–7PubMedCrossRef
go back to reference Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21(1):28–32PubMedCrossRef Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21(1):28–32PubMedCrossRef
go back to reference Gummadavelli A, Motelow JE, Smith N et al (2015) Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 56(1):114–124PubMedCrossRef Gummadavelli A, Motelow JE, Smith N et al (2015) Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 56(1):114–124PubMedCrossRef
go back to reference Hu B, Chen S, Chi H et al (2017) Controlling absence seizures by tuning activation level of the thalamus and striatum. Chaos Solitons Fractals 95:65–76CrossRef Hu B, Chen S, Chi H et al (2017) Controlling absence seizures by tuning activation level of the thalamus and striatum. Chaos Solitons Fractals 95:65–76CrossRef
go back to reference Ikeda H, Adachi K, Fujita S et al (2015) Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 26(1–2):18–32PubMedCrossRef Ikeda H, Adachi K, Fujita S et al (2015) Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 26(1–2):18–32PubMedCrossRef
go back to reference Johnson K (2016) The basal ganglia. Develop Disord Brain Psychology Press 2:1–14 Johnson K (2016) The basal ganglia. Develop Disord Brain Psychology Press 2:1–14
go back to reference Kim SH, Lim SC, Yang DW et al (2017) Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 13:2607PubMedPubMedCentralCrossRef Kim SH, Lim SC, Yang DW et al (2017) Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 13:2607PubMedPubMedCentralCrossRef
go back to reference Klinger N, Mittal S (2018) Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus 45(2):E4PubMedCrossRef Klinger N, Mittal S (2018) Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus 45(2):E4PubMedCrossRef
go back to reference Kohmann D, Lüttjohann A, Seidenbecher T et al (2016) Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 594(19):5695–5710PubMedPubMedCentralCrossRef Kohmann D, Lüttjohann A, Seidenbecher T et al (2016) Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats. J Physiol 594(19):5695–5710PubMedPubMedCentralCrossRef
go back to reference Kurada L, Bayat A, Joshi S et al (2020) Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 325:113070PubMedCrossRef Kurada L, Bayat A, Joshi S et al (2020) Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 325:113070PubMedCrossRef
go back to reference Luo C, Li Q, Xia Y et al (2012) Resting state basal ganglia network in idiopathic generalized epilepsy. Human Brain Mapp 33(6):1279–1294CrossRef Luo C, Li Q, Xia Y et al (2012) Resting state basal ganglia network in idiopathic generalized epilepsy. Human Brain Mapp 33(6):1279–1294CrossRef
go back to reference Magdaleno-Madrigal VM, ContrerasMu-rillo G, Valdés-Cruz A, et al (2019) Effects of High-and Low-Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole-Induced Seizures in Rats. Neuromodul Technol Neural Interface 22(4): 425–434 Magdaleno-Madrigal VM, ContrerasMu-rillo G, Valdés-Cruz A, et al (2019) Effects of High-and Low-Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole-Induced Seizures in Rats. Neuromodul Technol Neural Interface 22(4): 425–434
go back to reference Marten F, Rodrigues S, Benjamin O et al (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A 367(1891):1145–1161CrossRef Marten F, Rodrigues S, Benjamin O et al (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A 367(1891):1145–1161CrossRef
go back to reference Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L et al (2017) The role of thalamus versus cortex in epilepsy: evidence from human ictal centromedian recordings in patients assessed for deep brain stimulation. Int J Neural Syst 27(07):1750010PubMedCrossRef Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L et al (2017) The role of thalamus versus cortex in epilepsy: evidence from human ictal centromedian recordings in patients assessed for deep brain stimulation. Int J Neural Syst 27(07):1750010PubMedCrossRef
go back to reference Meeren HKM, Pijn JPM, Van Luijtelaar ELJM et al (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4):1480–1495PubMedPubMedCentralCrossRef Meeren HKM, Pijn JPM, Van Luijtelaar ELJM et al (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4):1480–1495PubMedPubMedCentralCrossRef
go back to reference Meeren H, van Luijtelaar G, da Silva FL et al (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376PubMedCrossRef Meeren H, van Luijtelaar G, da Silva FL et al (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376PubMedCrossRef
go back to reference Middlebrooks EH, Grewal SS, Stead M et al (2018) Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 45(2):E7PubMedCrossRef Middlebrooks EH, Grewal SS, Stead M et al (2018) Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 45(2):E7PubMedCrossRef
go back to reference Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181(2):224–230PubMedCrossRef Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181(2):224–230PubMedCrossRef
go back to reference Pantoja-Jiménez CR, Magdaleno-Madrigal VM, Almazán-Alvarado S et al (2014) Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures. Brain Stimul 7(4):587–594PubMedCrossRef Pantoja-Jiménez CR, Magdaleno-Madrigal VM, Almazán-Alvarado S et al (2014) Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures. Brain Stimul 7(4):587–594PubMedCrossRef
go back to reference Park HR, Choi SJ, Joo EY et al (2019) The role of anterior thalamic deep brain stimulation as an alternative therapy in patients with previously failed vagus nerve stimulation for refractory epilepsy. Stereot Funct Neuros 97(3):176–182CrossRef Park HR, Choi SJ, Joo EY et al (2019) The role of anterior thalamic deep brain stimulation as an alternative therapy in patients with previously failed vagus nerve stimulation for refractory epilepsy. Stereot Funct Neuros 97(3):176–182CrossRef
go back to reference Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041924CrossRef Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):041924CrossRef
go back to reference Robinson PA, Rennie CJ, Rowe DL et al (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapp 23(1):53–72CrossRef Robinson PA, Rennie CJ, Rowe DL et al (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapp 23(1):53–72CrossRef
go back to reference Slaght SJ, Paz T, Mahon S et al (2002) Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 4(3):9–22 Slaght SJ, Paz T, Mahon S et al (2002) Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy. Epileptic Disord 4(3):9–22
go back to reference Sorokin JM, Davidson TJ, Frechette E et al (2017) Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1):194–210PubMedCrossRef Sorokin JM, Davidson TJ, Frechette E et al (2017) Bidirectional control of generalized epilepsy networks via rapid real-time switching of firing mode. Neuron 93(1):194–210PubMedCrossRef
go back to reference Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28(6):317–324PubMedCrossRef Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28(6):317–324PubMedCrossRef
go back to reference Suffczynski P, Kalitzin S, Da Silva FHL (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484PubMedCrossRef Suffczynski P, Kalitzin S, Da Silva FHL (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484PubMedCrossRef
go back to reference Taylor PN, Goodfellow M, Wang Y et al (2013) Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol Cybern 107(1):83–94PubMedCrossRef Taylor PN, Goodfellow M, Wang Y et al (2013) Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol Cybern 107(1):83–94PubMedCrossRef
go back to reference Van Albada SJ, Gray RT, Drysdale PM, et al(2009) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol 257(4): 664-688 Van Albada SJ, Gray RT, Drysdale PM, et al(2009) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol 257(4): 664-688
go back to reference Van Albada SJ, Robinson PA(2009) Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and parkinsonian states. J Theor Biol 257(4): 642–663 Van Albada SJ, Robinson PA(2009) Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and parkinsonian states. J Theor Biol 257(4): 642–663
go back to reference Van Der Vlis TAMB, Schijns OEMG, Schaper FL et al (2019) Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 42(2):287–296CrossRef Van Der Vlis TAMB, Schijns OEMG, Schaper FL et al (2019) Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 42(2):287–296CrossRef
go back to reference Van Heukelum S, Kelderhuis J, Janssen P et al (2016) Timing of high-frequency cortical stimulation in a genetic absence model. Neuroscience 324:191–201PubMedCrossRef Van Heukelum S, Kelderhuis J, Janssen P et al (2016) Timing of high-frequency cortical stimulation in a genetic absence model. Neuroscience 324:191–201PubMedCrossRef
go back to reference Vuong J, Devergnas A (2017) The role of the basal ganglia in the control of seizure. J Neural Transm 125(3):531–545PubMedCrossRef Vuong J, Devergnas A (2017) The role of the basal ganglia in the control of seizure. J Neural Transm 125(3):531–545PubMedCrossRef
go back to reference Výtvarová E, Mareček R, Fousek J et al (2017) Large-scale cortico-subcortical functional networks in focal epilepsies: the role of the basal ganglia. Neuro Image Clin 14:28–36 Výtvarová E, Mareček R, Fousek J et al (2017) Large-scale cortico-subcortical functional networks in focal epilepsies: the role of the basal ganglia. Neuro Image Clin 14:28–36
go back to reference Wendling F, Bartolomei F, Modolo J (2017) Neocortical/thalamic in silico models of seizures and epilepsy//Models of seizures and epilepsy. Academic Press, pp. 233–246 Wendling F, Bartolomei F, Modolo J (2017) Neocortical/thalamic in silico models of seizures and epilepsy//Models of seizures and epilepsy. Academic Press, pp. 233–246
go back to reference Yang DP, Robinson PA (2019) Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Phys Rev E 100(3):032405PubMedCrossRef Yang DP, Robinson PA (2019) Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Phys Rev E 100(3):032405PubMedCrossRef
go back to reference Young JC, Vaughan DN, Paolini AG et al (2018) Electrical stimulation of the piriform cortex for the treatment of epilepsy: a review of the supporting evidence. Epilepsy Behav 88:152–161PubMedCrossRef Young JC, Vaughan DN, Paolini AG et al (2018) Electrical stimulation of the piriform cortex for the treatment of epilepsy: a review of the supporting evidence. Epilepsy Behav 88:152–161PubMedCrossRef
Metadata
Title
The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis
Authors
Bing Hu
Zhizhi Wang
Minbo Xu
Dongmei Zhang
Dingjiang Wang
Publication date
15-02-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2022
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09788-0

Other articles of this Issue 6/2022

Cognitive Neurodynamics 6/2022 Go to the issue