Skip to main content
Top
Published in:

01-12-2016 | Original Article

The application of social network mining to cattle movement analysis: introducing the predictive trend mining framework

Authors: Puteri Nohuddin, Frans Coenen, Rob Christley

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper describes a predictive social network mining framework which is demonstrated using the Great Britain cattle movement datasets. The proposed framework, the predictive trend mining framework (PTMF), is used to analyse episodes of time-stamped social network data. The PTMF has two main components (1) a frequent pattern trend analysis component that efficiently identifies temporal frequent patterns and trends and also provides a mechanism for clustering and analysing these patterns and trends so as to detect dynamic changes within the cattle movement network, and (2) the predictive modelling component for forecasting the percolation of information or data across the network. The PTMF incorporates a number of novel elements including mechanisms to: (1) identify temporal frequent patterns and trends, (2) cluster large sets of trends, (3) analyse temporal clusters for pattern trend change detection, (4) visualise these changes using pattern migration network maps and (5) predict the paths whereby information moves across the network over time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of 20th international conference on very large data bases, pp 487–499 Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of 20th international conference on very large data bases, pp 487–499
go back to reference Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM Press, pp 207–216 Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM Press, pp 207–216
go back to reference Aliabadi AZ, Razzaghi F, Madani SP, Ghorbani KAA (2013) Classifying organizational roles using email social networks. Adv Artif Intell 7884(301–307):2013MathSciNet Aliabadi AZ, Razzaghi F, Madani SP, Ghorbani KAA (2013) Classifying organizational roles using email social networks. Adv Artif Intell 7884(301–307):2013MathSciNet
go back to reference Angermeyer M, Matschinger H (2005) Causal beliefs and attitudes to people with schizophrenia: Trend analysis based on data from two population surveys in Germany. Br J Psychiatry 186:331–334CrossRef Angermeyer M, Matschinger H (2005) Causal beliefs and attitudes to people with schizophrenia: Trend analysis based on data from two population surveys in Germany. Br J Psychiatry 186:331–334CrossRef
go back to reference Backstrom L, Sun E, Marlow C (2010) Find me if you can: Improving geo- graphical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on World Wide Web, pp 61–70 Backstrom L, Sun E, Marlow C (2010) Find me if you can: Improving geo- graphical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on World Wide Web, pp 61–70
go back to reference Bobadilla J, Serradilla F, Bernal J (2010) A new collaborative filtering metric that improves the behavior of recommender systems. J Knowl Based Syst 23(6):520–528CrossRef Bobadilla J, Serradilla F, Bernal J (2010) A new collaborative filtering metric that improves the behavior of recommender systems. J Knowl Based Syst 23(6):520–528CrossRef
go back to reference Chen B, Zhao Q, Sun B, Mitra P (2007) Predicting blogging behavior using temporal and social networks. In: Proceedings of 2007 IEEE international conference on data mining, pp 439–444 Chen B, Zhao Q, Sun B, Mitra P (2007) Predicting blogging behavior using temporal and social networks. In: Proceedings of 2007 IEEE international conference on data mining, pp 439–444
go back to reference Chin A, Chignell M (2007) Identifying communities in blogs: roles for social network analysis and survey instruments. Int J Web Based Communities 3(3):345–363CrossRef Chin A, Chignell M (2007) Identifying communities in blogs: roles for social network analysis and survey instruments. Int J Web Based Communities 3(3):345–363CrossRef
go back to reference Coenen F, Goulbourne G, Leng P (2001) Computing association rules using partial totals. In: Proceedings of the 5th European conference on principles of data mining and knowledge discovery, pp 54–66 Coenen F, Goulbourne G, Leng P (2001) Computing association rules using partial totals. In: Proceedings of the 5th European conference on principles of data mining and knowledge discovery, pp 54–66
go back to reference Coenen F, Leng P, Ahmed S (2004) Data structures for association rule mining: T-trees and p-trees. IEEE Trans Data and Knowl Eng 16(6):774–778CrossRef Coenen F, Leng P, Ahmed S (2004) Data structures for association rule mining: T-trees and p-trees. IEEE Trans Data and Knowl Eng 16(6):774–778CrossRef
go back to reference Cottrell M, Rousset P (1997) A powerful tool for analyzing and representing multi- dimensional quantitative and qualitative data. In: Proceedings of the international work-conference on artificial and natural neural networks: biological and artificial computation: from neuroscience to technology, pp 861–871 Cottrell M, Rousset P (1997) A powerful tool for analyzing and representing multi- dimensional quantitative and qualitative data. In: Proceedings of the international work-conference on artificial and natural neural networks: biological and artificial computation: from neuroscience to technology, pp 861–871
go back to reference Gloor P, Krauss J, Nann S, Fischbach K, Schoder D (2008) Web science 2.0: identifying trends through semantic social network analysis. Social science re- search network. Soc Sci Res Network Working Paper Ser 4:215–222 Gloor P, Krauss J, Nann S, Fischbach K, Schoder D (2008) Web science 2.0: identifying trends through semantic social network analysis. Social science re- search network. Soc Sci Res Network Working Paper Ser 4:215–222
go back to reference Gosain A, Kumar A (2009) Analysis of health care data using different data mining techniques. Intelligent agent & multi-agent systems, 2009, Chennai, pp 1–6 Gosain A, Kumar A (2009) Analysis of health care data using different data mining techniques. Intelligent agent & multi-agent systems, 2009, Chennai, pp 1–6
go back to reference H. Becker, D. Iter, M. Naaman, L. Gravano: Identifying content for planned events across social media sites. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 533-542). ACM, 2012 H. Becker, D. Iter, M. Naaman, L. Gravano: Identifying content for planned events across social media sites. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 533-542). ACM, 2012
go back to reference Habiba H, Yu Y, Berger-Wolf T, Saia J (2008) Finding spread blockers in dynamic networks. In: Proceedings of the second international conference on Advances in social network mining and analysis. Springer, vol 08, pp 55–76 Habiba H, Yu Y, Berger-Wolf T, Saia J (2008) Finding spread blockers in dynamic networks. In: Proceedings of the second international conference on Advances in social network mining and analysis. Springer, vol 08, pp 55–76
go back to reference Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Burlington 2011 MATH Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Burlington 2011 MATH
go back to reference Kaiser C, Schlick S, Bodendorf F (2011) Warning system for online market research—identifying critical situations in online opinion formation. Knowl Based Syst 24:824–836CrossRef Kaiser C, Schlick S, Bodendorf F (2011) Warning system for online market research—identifying critical situations in online opinion formation. Knowl Based Syst 24:824–836CrossRef
go back to reference Khan M, Coenen F, Reid D, Tawfik H, Patel R, Lawson A (2011) A sliding windows based dual support framework for discovering emerging trends from temporal data. Journal of Knowledge Based System 23(4):316–322CrossRef Khan M, Coenen F, Reid D, Tawfik H, Patel R, Lawson A (2011) A sliding windows based dual support framework for discovering emerging trends from temporal data. Journal of Knowledge Based System 23(4):316–322CrossRef
go back to reference Kohonen T (1995) The self organizing maps. In: Springer series in information science, vol 30 Kohonen T (1995) The self organizing maps. In: Springer series in information science, vol 30
go back to reference Lampos V, Cristianini N (2010) Tracking the flu pandemic by monitoring the social web. In: 2nd IAPR workshop on cognitive information processing. IEEE Press, pp 411–416, June 2010 Lampos V, Cristianini N (2010) Tracking the flu pandemic by monitoring the social web. In: 2nd IAPR workshop on cognitive information processing. IEEE Press, pp 411–416, June 2010
go back to reference Liang Y, Caverlee J, Cheng Cao (2015) A noise-filtering approach for spatio-temporal event detection in social media. Adv Inf Retr 9022:233–244 Liang Y, Caverlee J, Cheng Cao (2015) A noise-filtering approach for spatio-temporal event detection in social media. Adv Inf Retr 9022:233–244
go back to reference McCallum A, Wang X, Corrada-Emmanuel A (2007) Topic and role discovery in social networks with experiments on Enron and academic email. J Artif Intell Res 30(1):249–272 McCallum A, Wang X, Corrada-Emmanuel A (2007) Topic and role discovery in social networks with experiments on Enron and academic email. J Artif Intell Res 30(1):249–272
go back to reference Neville J, Provost F (2009) Prediction modelling in social networks. ICWSM 2009 Tutorial Neville J, Provost F (2009) Prediction modelling in social networks. ICWSM 2009 Tutorial
go back to reference Newman M (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:1–5 Newman M (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:1–5
go back to reference Nishikido T, Sunayama W, Nishihara Y (2009) Valuable change detection in keyword map animation. In: Proceedings 22nd Canadian conference on artificial intelligence. Springer, pp 233–236 Nishikido T, Sunayama W, Nishihara Y (2009) Valuable change detection in keyword map animation. In: Proceedings 22nd Canadian conference on artificial intelligence. Springer, pp 233–236
go back to reference Nohuddin P, Christley R, Coenen F, Patel Y, Setzkorn C, Williams S (2011) Finding “interesting” trends in social networks using frequent pattern mining and self-organizing maps. J Knowl Based Syst 29:104–113CrossRef Nohuddin P, Christley R, Coenen F, Patel Y, Setzkorn C, Williams S (2011) Finding “interesting” trends in social networks using frequent pattern mining and self-organizing maps. J Knowl Based Syst 29:104–113CrossRef
go back to reference Nohuddin P, Coenen F, Christley R, Sunayama W (2015) visualisation of trend pattern migrations in social networks. Adv Vis Inform 77–88 Nohuddin P, Coenen F, Christley R, Sunayama W (2015) visualisation of trend pattern migrations in social networks. Adv Vis Inform 77–88
go back to reference Nunes SA, Romani LAS, Avila AMH, Traina C Jr, de Sousa EPM (2011) Fractal-based analysis to identify trend changes in multiple climate time series. J Inf Data Manag 2(1):51 Nunes SA, Romani LAS, Avila AMH, Traina C Jr, de Sousa EPM (2011) Fractal-based analysis to identify trend changes in multiple climate time series. J Inf Data Manag 2(1):51
go back to reference Ochoa-Zezzatti A, Sánchez J, Hernández-Aguilar A, Pérez R (2016) Improving an Industrial problem optimizing the material in car seats. Int J Comb Optim Prob Inform 7(1):54–62 Ochoa-Zezzatti A, Sánchez J, Hernández-Aguilar A, Pérez R (2016) Improving an Industrial problem optimizing the material in car seats. Int J Comb Optim Prob Inform 7(1):54–62
go back to reference Russell MA (2011) Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites. O’Reilly Media Russell MA (2011) Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites. O’Reilly Media
go back to reference Somaraki V, Broadbent D, Coenen F, Harding S (2010) Finding temporal patterns in noisy longitudinal data: a study in diabetic retinopathy. In: Proceedings 10th industrial conference on data mining, pp 418–431 Somaraki V, Broadbent D, Coenen F, Harding S (2010) Finding temporal patterns in noisy longitudinal data: a study in diabetic retinopathy. In: Proceedings 10th industrial conference on data mining, pp 418–431
go back to reference Sugiyama K, Misue K (1995) Graph drawing by the magnetic spring model. J Vis Lang Comput 6(3):217–231CrossRef Sugiyama K, Misue K (1995) Graph drawing by the magnetic spring model. J Vis Lang Comput 6(3):217–231CrossRef
go back to reference Symeonidis P, Tiakas E, Manolopoulos Y (2011) Product recommendation and rating prediction based on multi-modal social networks. In: Proceedings of the fifth ACM conference on recommender systems (RecSys ‘11). ACM, New York, pp 61–68 Symeonidis P, Tiakas E, Manolopoulos Y (2011) Product recommendation and rating prediction based on multi-modal social networks. In: Proceedings of the fifth ACM conference on recommender systems (RecSys ‘11). ACM, New York, pp 61–68
go back to reference Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: Proceedings 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘07), pp 717–726 Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: Proceedings 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘07), pp 717–726
go back to reference Taskar B, Wong M, Abbeel P, Koller D (2003) Link prediction in relational data. In: Neural information processing systems Taskar B, Wong M, Abbeel P, Koller D (2003) Link prediction in relational data. In: Neural information processing systems
go back to reference Ting I, Hong T, Wang LSL (2011) Social network mining, analysis, and research trends: techniques and applications. Publisher: IGI Global. ISBN: 978-1613505137 Ting I, Hong T, Wang LSL (2011) Social network mining, analysis, and research trends: techniques and applications. Publisher: IGI Global. ISBN: 978-1613505137
go back to reference Yuan W, Guan D, Lee Y, Lee S, Hur SJ (2010) Improved trust aware recommender system using small worldness of trust networks. J Knowl Based Syst 23:232–238CrossRef Yuan W, Guan D, Lee Y, Lee S, Hur SJ (2010) Improved trust aware recommender system using small worldness of trust networks. J Knowl Based Syst 23:232–238CrossRef
Metadata
Title
The application of social network mining to cattle movement analysis: introducing the predictive trend mining framework
Authors
Puteri Nohuddin
Frans Coenen
Rob Christley
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0353-x

Premium Partner