Skip to main content
Top
Published in: Meccanica 6/2015

01-06-2015

The application of the geometric offset method to the rigid joint modeling in the differential quadrature element model updating of frame structures

Authors: Laleh Fatahi, Shapour Moradi, Afshin Ghanbarzadeh

Published in: Meccanica | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The following paper deals with the differential quadrature element (DQE) model updating of frame structures when the linear vibration behavior is of interest. To model the rigid L and T joints of the frame, a geometric offset method is employed to define a rigid region around each joint. The kinematic constraints due to the rigid joints, the equilibrium of axial and transverse forces, and the bending moments acting on the joint are utilized to model the joints in the DQE model of the frame. Then, to update the DQE model using the experimental natural frequencies, a minimization problem is defined to reduce an objective function based on the residuals between a measurement set obtained from modal testing on the frame and the corresponding DQE model predictions. Using the proposed approach, the DQE model of a three-story steel frame for in-plane vibrations is updated. To do so, several parameters of the model including the Young’s modulus, the density, the geometric offsets and mass parameters of the joints, and the stiffness of the rotational spring used to model the foundation are considered as the design parameters. The optimum values of the design parameters are then found by employing the particle swarm inspired multi-elitist artificial bee colony algorithm. The results of the model updating indicate a good coincidence of the modal parameters of the updated DQE and the experimental models. The sensitivity analysis also reveals that the highest eigenvalue sensitivities are to the joints’ parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Bellman RE, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52CrossRefADSMATHMathSciNet Bellman RE, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52CrossRefADSMATHMathSciNet
3.
go back to reference Tornabene F, Viola E (2009) Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44(3):255–281CrossRefMATH Tornabene F, Viola E (2009) Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44(3):255–281CrossRefMATH
4.
go back to reference Malekzadeh P, Haghighi MG, Atashi MM (2011) Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. Meccanica 46(5):893–913CrossRefMATHMathSciNet Malekzadeh P, Haghighi MG, Atashi MM (2011) Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. Meccanica 46(5):893–913CrossRefMATHMathSciNet
5.
go back to reference Yas MH, Jodaei A, Irandoust S, Aghdam MN (2012) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47(6):1401–1423CrossRefMATHMathSciNet Yas MH, Jodaei A, Irandoust S, Aghdam MN (2012) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47(6):1401–1423CrossRefMATHMathSciNet
6.
go back to reference Bambill DV, Rossit CA, Rossi RE, Felix DH, Ratazzi AR (2013) Transverse free vibration of non-uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6):1289–1311CrossRefMATHMathSciNet Bambill DV, Rossit CA, Rossi RE, Felix DH, Ratazzi AR (2013) Transverse free vibration of non-uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6):1289–1311CrossRefMATHMathSciNet
7.
go back to reference Liu GR, Wu TY (2001) In-plane vibration analyses of circular arches by the generalized differential quadrature rule. Int J Mech Sci 43(11):2597–2611CrossRefMATH Liu GR, Wu TY (2001) In-plane vibration analyses of circular arches by the generalized differential quadrature rule. Int J Mech Sci 43(11):2597–2611CrossRefMATH
8.
go back to reference Wu TY, Liu GR (2001) The generalized differential quadrature rule for fourth-order differential equations. Int J Numer Methods Eng 50(8):1907–1929CrossRefMATH Wu TY, Liu GR (2001) The generalized differential quadrature rule for fourth-order differential equations. Int J Numer Methods Eng 50(8):1907–1929CrossRefMATH
9.
go back to reference Wang X, Tan M, Zhou Y (2003) Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method. Thin-Walled Struct 41(1):15–29CrossRef Wang X, Tan M, Zhou Y (2003) Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method. Thin-Walled Struct 41(1):15–29CrossRef
10.
go back to reference Wang X, Liu F, Wang X, Gan L (2005) New approaches in application of differential quadrature method to fourth-order differential equations. Commun Numer Methods Eng 21(2):61–71CrossRefMATHMathSciNet Wang X, Liu F, Wang X, Gan L (2005) New approaches in application of differential quadrature method to fourth-order differential equations. Commun Numer Methods Eng 21(2):61–71CrossRefMATHMathSciNet
11.
go back to reference Viola E, Dilena M, Tornabene F (2007) Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches. J Sound Vib 299(1):143–163CrossRefADS Viola E, Dilena M, Tornabene F (2007) Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches. J Sound Vib 299(1):143–163CrossRefADS
12.
go back to reference Zong Z, Zhang Y (2009) Advanced differential quadrature methods. CRC Press, Boca RatonMATH Zong Z, Zhang Y (2009) Advanced differential quadrature methods. CRC Press, Boca RatonMATH
13.
go back to reference Chen CN (2008) Discrete element analysis methods of generic differential quadratures, vol 25. Springer, Berlin Chen CN (2008) Discrete element analysis methods of generic differential quadratures, vol 25. Springer, Berlin
14.
go back to reference Shu C, Chew YT, Liu Y (1998) Different interface approximations in multi-domain GDQ simulation of Czochralski bulk flows. Int J Numer Methods Heat Fluid Flow 8(4):424–444CrossRefMATH Shu C, Chew YT, Liu Y (1998) Different interface approximations in multi-domain GDQ simulation of Czochralski bulk flows. Int J Numer Methods Heat Fluid Flow 8(4):424–444CrossRefMATH
15.
go back to reference Liu GR, Wu TY (2001) Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J Sound Vib 246(3):461–481CrossRefADS Liu GR, Wu TY (2001) Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J Sound Vib 246(3):461–481CrossRefADS
16.
go back to reference Chen CN (1995) A differential quadrature element method. In: Proceeding of the 1st international conference on engineering computation and computer simulation, vol 1, Changsha, China, pp 25–34 Chen CN (1995) A differential quadrature element method. In: Proceeding of the 1st international conference on engineering computation and computer simulation, vol 1, Changsha, China, pp 25–34
17.
go back to reference Striz AG, Chen WL, Bert CW (1997) Free vibration of plates by the high accuracy quadrature element method. J Sound Vib 202(5):689–702CrossRefADSMATH Striz AG, Chen WL, Bert CW (1997) Free vibration of plates by the high accuracy quadrature element method. J Sound Vib 202(5):689–702CrossRefADSMATH
18.
go back to reference Liu FL (2000) Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method. Int J Solids Struct 37(51):7671–7688CrossRefMATH Liu FL (2000) Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method. Int J Solids Struct 37(51):7671–7688CrossRefMATH
19.
go back to reference Wang X, Wang Y (2002) On non-linear behaviour of spherical shallow shells bonded with piezoelectric actuators by the differential quadrature element method (DQEM). Int J Numer Methods Eng 53(6):1477–1490CrossRefMATH Wang X, Wang Y (2002) On non-linear behaviour of spherical shallow shells bonded with piezoelectric actuators by the differential quadrature element method (DQEM). Int J Numer Methods Eng 53(6):1477–1490CrossRefMATH
20.
go back to reference Wang X, Wang Y, Zhou Y (2004) Application of a new differential quadrature element method to free vibrational analysis of beams and frame structures. J Sound Vib 269(3):1133–1141CrossRefADSMATH Wang X, Wang Y, Zhou Y (2004) Application of a new differential quadrature element method to free vibrational analysis of beams and frame structures. J Sound Vib 269(3):1133–1141CrossRefADSMATH
21.
go back to reference Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80(13):1718–1742CrossRefMATHMathSciNet Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80(13):1718–1742CrossRefMATHMathSciNet
22.
go back to reference Xing Y, Liu B, Liu G (2010) A differential quadrature finite element method. Int J Appl Mech 2(01):207–227CrossRef Xing Y, Liu B, Liu G (2010) A differential quadrature finite element method. Int J Appl Mech 2(01):207–227CrossRef
23.
go back to reference Viola E, Tornabene F, Fantuzzi N (2013) Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Compos Struct 106:815–834CrossRef Viola E, Tornabene F, Fantuzzi N (2013) Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Compos Struct 106:815–834CrossRef
24.
go back to reference Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542CrossRefMATHMathSciNet Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542CrossRefMATHMathSciNet
25.
go back to reference Tornabene F, Fantuzzi N, Ubertini F, Viola E (2014) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev. doi:10.1115/1.4028859 MATH Tornabene F, Fantuzzi N, Ubertini F, Viola E (2014) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev. doi:10.​1115/​1.​4028859 MATH
26.
27.
go back to reference Zhong H, Wang Y (2010) Weak form quadrature element analysis of Bickford beams. Eur J Mech A Solids 29(5):851–858CrossRef Zhong H, Wang Y (2010) Weak form quadrature element analysis of Bickford beams. Eur J Mech A Solids 29(5):851–858CrossRef
28.
go back to reference Zhang R, Zhong H (2013) Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch Appl Mech 83(9):1309–1325CrossRefMATH Zhang R, Zhong H (2013) Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch Appl Mech 83(9):1309–1325CrossRefMATH
29.
go back to reference Striz AG, Weilong C, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818CrossRefMATH Striz AG, Weilong C, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818CrossRefMATH
30.
go back to reference Wang X, Gu H (1997) Static analysis of frame structures by the differential quadrature element method. Int J Numer Methods Eng 40(4):759–772CrossRefMATH Wang X, Gu H (1997) Static analysis of frame structures by the differential quadrature element method. Int J Numer Methods Eng 40(4):759–772CrossRefMATH
31.
go back to reference Chen CN (1997) The two-dimensional frame model of the differential quadrature element method. Comput Struct 62(3):555–571CrossRefMATH Chen CN (1997) The two-dimensional frame model of the differential quadrature element method. Comput Struct 62(3):555–571CrossRefMATH
32.
go back to reference Chen CN (2005) DQEM analysis of in-plane vibration of curved beam structures. Adv Eng Softw 36(6):412–424CrossRefADSMATH Chen CN (2005) DQEM analysis of in-plane vibration of curved beam structures. Adv Eng Softw 36(6):412–424CrossRefADSMATH
33.
go back to reference Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49(4):995–1009CrossRefMATHMathSciNet Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49(4):995–1009CrossRefMATHMathSciNet
34.
go back to reference Fatahi L, Moradi S (2013) Differential quadrature element model updating of frame structures. Proc Inst Mech Eng C J Mech Eng Sci 228(7):1094–1107CrossRef Fatahi L, Moradi S (2013) Differential quadrature element model updating of frame structures. Proc Inst Mech Eng C J Mech Eng Sci 228(7):1094–1107CrossRef
35.
go back to reference Mottershead JE, Friswell MI, Ng GHT, Brandon JA (1996) Geometric parameters for finite element model updating of joints and constraints. Mech Syst Signal Process 10(2):171–182CrossRefADS Mottershead JE, Friswell MI, Ng GHT, Brandon JA (1996) Geometric parameters for finite element model updating of joints and constraints. Mech Syst Signal Process 10(2):171–182CrossRefADS
36.
go back to reference Ahmadian H, Mottershead JE, Friswell MI (1996) Joint modelling for finite element model updating. In: Proceeding 14th international modal analysis conference, Dearborn, MI, Feb 12–15, pp 591–596 Ahmadian H, Mottershead JE, Friswell MI (1996) Joint modelling for finite element model updating. In: Proceeding 14th international modal analysis conference, Dearborn, MI, Feb 12–15, pp 591–596
37.
go back to reference Horton B, Gurgenci H, Veidt M, Friswell MI (1999) Finite element model updating of the welded joints in a tubular H-frame. In: Proceeding 17th international modal analysis conference, Kissimmee, FL, Feb 8–11, pp 1556–1562 Horton B, Gurgenci H, Veidt M, Friswell MI (1999) Finite element model updating of the welded joints in a tubular H-frame. In: Proceeding 17th international modal analysis conference, Kissimmee, FL, Feb 8–11, pp 1556–1562
38.
go back to reference Horton B, Gurgenci H, Veidt M, Friswell MI (2000) Finite element model updating of a welded space frame. In: Proceeding 18th international modal analysis conference, San Antonio, TX, Feb 7–10, pp 529–535 Horton B, Gurgenci H, Veidt M, Friswell MI (2000) Finite element model updating of a welded space frame. In: Proceeding 18th international modal analysis conference, San Antonio, TX, Feb 7–10, pp 529–535
39.
go back to reference Mottershead JE, James S (1998) Updating parameters for the model of a three storey aluminum space frame. In: Proceeding 16th international modal analysis conference, vol 1, Santa Barbara, CA, Feb 2–5, pp 8–11 Mottershead JE, James S (1998) Updating parameters for the model of a three storey aluminum space frame. In: Proceeding 16th international modal analysis conference, vol 1, Santa Barbara, CA, Feb 2–5, pp 8–11
40.
go back to reference Ashlock D (2006) Evolutionary computation for modeling and optimization. Springer, BerlinMATH Ashlock D (2006) Evolutionary computation for modeling and optimization. Springer, BerlinMATH
41.
go back to reference Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding IEEE international conference on neural networks, vol 4, Perth, Australia, Nov 27–Dec 1, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding IEEE international conference on neural networks, vol 4, Perth, Australia, Nov 27–Dec 1, pp 1942–1948
42.
go back to reference Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
43.
go back to reference Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK
44.
go back to reference Moradi S, Fatahi L, Razi P (2010) Finite element model updating using bees algorithm. Struct Multidiscip Optim 42(2):283–291CrossRef Moradi S, Fatahi L, Razi P (2010) Finite element model updating using bees algorithm. Struct Multidiscip Optim 42(2):283–291CrossRef
45.
go back to reference Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRef Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014CrossRef
46.
go back to reference Saada MM, Arafa MH, Nassef AO (2013) Finite element model updating approach to damage identification in beams using particle swarm optimization. Eng Optim 45(6):677–696CrossRef Saada MM, Arafa MH, Nassef AO (2013) Finite element model updating approach to damage identification in beams using particle swarm optimization. Eng Optim 45(6):677–696CrossRef
47.
go back to reference Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):687–697CrossRefMathSciNet Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):687–697CrossRefMathSciNet
48.
go back to reference Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput Optim Appl 57(2):493–516CrossRefMATHMathSciNet Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput Optim Appl 57(2):493–516CrossRefMATHMathSciNet
49.
go back to reference Shu C, Du H (1997) Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beam and plates. Int J Solids Struct 34:819–835CrossRefMATH Shu C, Du H (1997) Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beam and plates. Int J Solids Struct 34:819–835CrossRefMATH
Metadata
Title
The application of the geometric offset method to the rigid joint modeling in the differential quadrature element model updating of frame structures
Authors
Laleh Fatahi
Shapour Moradi
Afshin Ghanbarzadeh
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Meccanica / Issue 6/2015
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0103-6

Other articles of this Issue 6/2015

Meccanica 6/2015 Go to the issue

Premium Partners