Skip to main content
Top

2013 | OriginalPaper | Chapter

7. The Boundaries of Life

Authors : Charles S. Cockell, Sophie Nixon

Published in: Astrochemistry and Astrobiology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The boundaries of life are set by the physical and chemical limits beyond which functions associated with life, including growth and reproduction, cannot occur. Although these limits might appear to be specific to terrestrial life, thermodynamics and the basic biophysical properties of carbon-based molecules mean that the boundary of life using carbon as a molecular backbone and water as a solvent (the ‘biospace’) is likely to be universal, although exhibiting small variations depending on the particular molecular architecture adopted by life. Entirely novel biospaces using different chemistries (e.g. ammonia as a solvent) might be possible, although there is currently no empirical evidence for these alternative life chemistries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC
2.
go back to reference Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb Ecol 47:300–304CrossRef Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb Ecol 47:300–304CrossRef
3.
go back to reference Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29CrossRef Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29CrossRef
4.
go back to reference Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121CrossRef Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121CrossRef
5.
go back to reference Junge K, Deming JW, Hajo E (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310CrossRef Junge K, Deming JW, Hajo E (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310CrossRef
6.
go back to reference Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233CrossRef Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233CrossRef
7.
go back to reference Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326CrossRef Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326CrossRef
8.
go back to reference Brock TD (1979) Biology of micro-organisms, 3rd edn. Prentice-Hall, Englewood Cliffs Brock TD (1979) Biology of micro-organisms, 3rd edn. Prentice-Hall, Englewood Cliffs
9.
go back to reference Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92CrossRef Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92CrossRef
10.
go back to reference Junge K, Eicken H, Swanson BD, Deming JW (2007) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429CrossRef Junge K, Eicken H, Swanson BD, Deming JW (2007) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429CrossRef
11.
go back to reference Warren SG, Hudson SR (2003) Bacterial activity in South pole snow is questionable. Appl Environ Microbiol 69:6340–6341CrossRef Warren SG, Hudson SR (2003) Bacterial activity in South pole snow is questionable. Appl Environ Microbiol 69:6340–6341CrossRef
12.
go back to reference Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South pole snow. Appl Environ Microbiol 66:4514–4517CrossRef Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South pole snow. Appl Environ Microbiol 66:4514–4517CrossRef
13.
go back to reference Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512CrossRef Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512CrossRef
14.
go back to reference Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557CrossRef Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557CrossRef
15.
go back to reference Rivkina EM, Laurinavichus KS, Gilichinsky DA, Scherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181CrossRef Rivkina EM, Laurinavichus KS, Gilichinsky DA, Scherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181CrossRef
16.
go back to reference Elberling B, Brandt KH (2003) Uncoupling of microbial CO2 production and release in frozen soils and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272CrossRef Elberling B, Brandt KH (2003) Uncoupling of microbial CO2 production and release in frozen soils and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272CrossRef
17.
go back to reference Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRef Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRef
18.
go back to reference Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234CrossRef Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234CrossRef
19.
go back to reference Morita RY (1997) Bacteria in oligotrophic environments. Kluwer, Dordrecht Morita RY (1997) Bacteria in oligotrophic environments. Kluwer, Dordrecht
20.
go back to reference Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci USA 101:4631–4636CrossRef Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci USA 101:4631–4636CrossRef
21.
go back to reference D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389CrossRef D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389CrossRef
22.
go back to reference Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRef Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRef
23.
go back to reference Daniel RM, Cowan DA (2000) Review: biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264CrossRef Daniel RM, Cowan DA (2000) Review: biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264CrossRef
24.
go back to reference Cowan DA (2004) The upper temperature of life – how far can we go? Trends Microbiol 12:58–60CrossRef Cowan DA (2004) The upper temperature of life – how far can we go? Trends Microbiol 12:58–60CrossRef
25.
go back to reference Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722 Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722
26.
go back to reference Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MFJM, Adams MWW (1997) Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritime. J Bacteriol 179:2766–2768 Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MFJM, Adams MWW (1997) Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritime. J Bacteriol 179:2766–2768
27.
go back to reference Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381CrossRef Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381CrossRef
28.
go back to reference Kato CL, Li Y, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513 Kato CL, Li Y, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513
29.
go back to reference Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516CrossRef Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516CrossRef
30.
go back to reference Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKa CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021CrossRef Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKa CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021CrossRef
31.
go back to reference Harris RF (1981) The effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23–95 Harris RF (1981) The effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23–95
32.
go back to reference Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267CrossRef Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267CrossRef
33.
go back to reference Brown AD (1990) Microbial water stress: physiology: principles and perspectives. Wiley, Chichester Brown AD (1990) Microbial water stress: physiology: principles and perspectives. Wiley, Chichester
34.
go back to reference Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190CrossRef Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190CrossRef
35.
go back to reference Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, Alves FDL, La Cono V, Genovese M, Mckew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments. Environ Microbiol 9:801–813CrossRef Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, Alves FDL, La Cono V, Genovese M, Mckew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments. Environ Microbiol 9:801–813CrossRef
36.
go back to reference van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123CrossRef van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123CrossRef
37.
go back to reference Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:735–805 Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:735–805
38.
go back to reference Möhlmann D (2005) Adsorption of water-related potential chemical and biological processes in the upper martian surface. Astrobiology 5:770–777CrossRef Möhlmann D (2005) Adsorption of water-related potential chemical and biological processes in the upper martian surface. Astrobiology 5:770–777CrossRef
39.
go back to reference Koop T (2002) The water activity of aqueous solutions in equilibrium with ice. Bull Chem Soc Jpn 75:2587–2588CrossRef Koop T (2002) The water activity of aqueous solutions in equilibrium with ice. Bull Chem Soc Jpn 75:2587–2588CrossRef
40.
go back to reference Robbins EI, Rodgers TM, Alpers CN, Nordstrom DK (2000) Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 433:15–23CrossRef Robbins EI, Rodgers TM, Alpers CN, Nordstrom DK (2000) Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 433:15–23CrossRef
41.
go back to reference Kelch BA, Eagen KP, Erciyas EP, Humphris EL, Thomason AR, Mitsuiki S, Agard DA (2007) Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J Mol Biol 368:870–883CrossRef Kelch BA, Eagen KP, Erciyas EP, Humphris EL, Thomason AR, Mitsuiki S, Agard DA (2007) Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J Mol Biol 368:870–883CrossRef
42.
go back to reference Baross JA, Berner SA, Cody GD, Copley SD, Pace NR (2007) The limits of organic life in planetary systems. National Academies Press, Washington, DC Baross JA, Berner SA, Cody GD, Copley SD, Pace NR (2007) The limits of organic life in planetary systems. National Academies Press, Washington, DC
43.
go back to reference Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611 t and Gelidibacter sp. strain IC158. Appl Environ Microbiol 65:3757–3760 Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611 t and Gelidibacter sp. strain IC158. Appl Environ Microbiol 65:3757–3760
44.
go back to reference Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341CrossRef Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341CrossRef
45.
go back to reference Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304CrossRef Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304CrossRef
46.
go back to reference Schulze-Makuch D, Irwin LN (2008) Life in the Universe. Springer, HeidelbergCrossRef Schulze-Makuch D, Irwin LN (2008) Life in the Universe. Springer, HeidelbergCrossRef
47.
go back to reference Storey KB, Storey JM (1984) Biochemical adaption for freezing tolerance in the wood, Rana sylvatica. J Comp Physiol 155:29–36 Storey KB, Storey JM (1984) Biochemical adaption for freezing tolerance in the wood, Rana sylvatica. J Comp Physiol 155:29–36
48.
go back to reference Feinberg G, Shapiro R (1980) Life beyond Earth: the intelligent Earthling’s guide to life in the Universe. William Morrow and Company, Inc., New York Feinberg G, Shapiro R (1980) Life beyond Earth: the intelligent Earthling’s guide to life in the Universe. William Morrow and Company, Inc., New York
49.
go back to reference Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167CrossRef Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167CrossRef
50.
go back to reference Firsoff VA (1963) Life beyond the Earth. Basic Books, Inc., New York Firsoff VA (1963) Life beyond the Earth. Basic Books, Inc., New York
51.
go back to reference Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the Universe? Curr Opin Chem Biol 8:672–689CrossRef Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the Universe? Curr Opin Chem Biol 8:672–689CrossRef
52.
go back to reference Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results re-interpreted. Int J Astrobiol 6:147–152CrossRef Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results re-interpreted. Int J Astrobiol 6:147–152CrossRef
53.
go back to reference Krauskopf KB (1983) Introduction to geochemistry, 2nd edn. McGraw-Hill, London Krauskopf KB (1983) Introduction to geochemistry, 2nd edn. McGraw-Hill, London
54.
go back to reference Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864 Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864
55.
go back to reference Stumm W, Morgan JJ (1995) Aquatic chemistry – chemical equilibria and rates in natural waters, 3rd edn. Wiley-Blackwell, New York Stumm W, Morgan JJ (1995) Aquatic chemistry – chemical equilibria and rates in natural waters, 3rd edn. Wiley-Blackwell, New York
56.
go back to reference Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizier of the family Ectothiorhodospiraceae. Extremophiles 15:271–279CrossRef Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizier of the family Ectothiorhodospiraceae. Extremophiles 15:271–279CrossRef
57.
go back to reference Shelobolina ES, VanPraagh CG, Lovley DR (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20:143–156CrossRef Shelobolina ES, VanPraagh CG, Lovley DR (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20:143–156CrossRef
58.
go back to reference Warn JRW, Peters APH (1996) Concise chemical thermodynamics, 2nd edn. CRC Press, Boca Raton/London Warn JRW, Peters APH (1996) Concise chemical thermodynamics, 2nd edn. CRC Press, Boca Raton/London
59.
go back to reference Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30CrossRef Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30CrossRef
60.
go back to reference Grinder-Vogel M, Criddle CS, Fendorf S (2006) Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ Sci Technol 40:3544–3550CrossRef Grinder-Vogel M, Criddle CS, Fendorf S (2006) Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ Sci Technol 40:3544–3550CrossRef
61.
go back to reference Rogers KL, Amend JP (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3:319–332CrossRef Rogers KL, Amend JP (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3:319–332CrossRef
62.
go back to reference Rogers KL, Amend JP, Gurrieri S (2007) Temporal changes in fluid geochemistry and energy profiles in the Vulcano Island hydrothermal system. Astrobiology 7:905–932CrossRef Rogers KL, Amend JP, Gurrieri S (2007) Temporal changes in fluid geochemistry and energy profiles in the Vulcano Island hydrothermal system. Astrobiology 7:905–932CrossRef
63.
go back to reference Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the Universe: unconventional methods for an unconventional problem. Int Microbiol 2:223–230 Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the Universe: unconventional methods for an unconventional problem. Int Microbiol 2:223–230
64.
go back to reference Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838CrossRef Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838CrossRef
65.
go back to reference Hoehler TM, Amend JP, Shock EL (2007) A “follow the energy” approach to astrobiology. Astrobiology 7:819–823CrossRef Hoehler TM, Amend JP, Shock EL (2007) A “follow the energy” approach to astrobiology. Astrobiology 7:819–823CrossRef
Metadata
Title
The Boundaries of Life
Authors
Charles S. Cockell
Sophie Nixon
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31730-9_7

Premium Partners