Skip to main content
Top
Published in:

20-09-2022

The Bubble Transform and the de Rham Complex

Authors: Richard S. Falk, Ragnar Winther

Published in: Foundations of Computational Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this paper is to discuss a generalization of the bubble transform to differential forms. The bubble transform was discussed in Falk and Winther (Found Comput Math 16(1):297–328, 2016) for scalar valued functions, or zero-forms, and represents a new tool for the understanding of finite element spaces of arbitrary polynomial degree. The present paper contains a similar study for differential forms. From a simplicial mesh \({{\mathscr {T}}}\) of the domain \(\varOmega \), we build a map which decomposes piecewise smooth k-forms into a sum of local bubbles supported on appropriate macroelements. The key properties of the decomposition are that it commutes with the exterior derivative and preserves the piecewise polynomial structure of the standard finite element spaces of k-forms. Furthermore, the transform is bounded in \(L^2\) and also on the appropriate subspace consisting of k-forms with exterior derivatives in \(L^2\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Douglas N. Arnold, Finite Element Exterior Calculus, CBMS-NSF Regional Conf. Ser. in Appl. Math. 93, SIAM, Philadelphia, 2018. xi+120 pp. Douglas N. Arnold, Finite Element Exterior Calculus, CBMS-NSF Regional Conf. Ser. in Appl. Math. 93, SIAM, Philadelphia, 2018. xi+120 pp.
2.
go back to reference Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006), 1–155.ADSMathSciNetCrossRef Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006), 1–155.ADSMathSciNetCrossRef
3.
go back to reference Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 21-26, 1660–1672.ADSMathSciNetCrossRef Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 21-26, 1660–1672.ADSMathSciNetCrossRef
4.
go back to reference Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354.MathSciNetCrossRef Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354.MathSciNetCrossRef
5.
go back to reference Douglas N. Arnold and Johnny Guzmán, Local\(L^2\)-bounded commuting projections in FEEC, ESAIM Math. Model. Numer. Anal. 55 (2021), no. 5, 2169–2184.MathSciNetCrossRef Douglas N. Arnold and Johnny Guzmán, Local\(L^2\)-bounded commuting projections in FEEC, ESAIM Math. Model. Numer. Anal. 55 (2021), no. 5, 2169–2184.MathSciNetCrossRef
6.
go back to reference Ivo Babuška and Manil Suri, The optimal convergence rate of the\(p\)-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776.ADSMathSciNetCrossRef Ivo Babuška and Manil Suri, The optimal convergence rate of the\(p\)-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776.ADSMathSciNetCrossRef
7.
go back to reference Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, and Michel Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, vol. 1939, Springer-Verlag, Berlin, 2008, Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by Boffi and Lucia Gastaldi. Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, and Michel Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, vol. 1939, Springer-Verlag, Berlin, 2008, Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by Boffi and Lucia Gastaldi.
8.
go back to reference Daniele Boffi, Martin Costabel, Monique Dauge, Leszek Demkowicz, and Ralf Hiptmair, Discrete compactness for the\(p\)-version of discrete differential forms, SIAM J. Numer. Anal. 49 (2011), no. 1, 135–158.MathSciNetCrossRef Daniele Boffi, Martin Costabel, Monique Dauge, Leszek Demkowicz, and Ralf Hiptmair, Discrete compactness for the\(p\)-version of discrete differential forms, SIAM J. Numer. Anal. 49 (2011), no. 1, 135–158.MathSciNetCrossRef
9.
go back to reference Phillipe G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, (1978), xix+530 pp., Phillipe G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, (1978), xix+530 pp.,
10.
go back to reference Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813–829.MathSciNet Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813–829.MathSciNet
11.
go back to reference Leszek Demkowicz and Ivo Babuška, \(p\)interpolation error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer. Anal. 41 (2003), no. 4, 1195–1208.MathSciNetCrossRef Leszek Demkowicz and Ivo Babuška, \(p\)interpolation error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer. Anal. 41 (2003), no. 4, 1195–1208.MathSciNetCrossRef
12.
go back to reference Leszek Demkowicz and Annalisa Buffa, \(H^1\), \(H({{\rm curl}})\)and\(H({{\rm div}})\)-conforming projection-based interpolation in three dimensions. Quasi-optimal\(p\)-interpolation estimates, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 2-5, 267–296. Leszek Demkowicz and Annalisa Buffa, \(H^1\), \(H({{\rm curl}})\)and\(H({{\rm div}})\)-conforming projection-based interpolation in three dimensions. Quasi-optimal\(p\)-interpolation estimates, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 2-5, 267–296.
13.
go back to reference Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. I, SIAM J. Numer. Anal. 46 (2008), no. 6, 3006–3031.MathSciNetCrossRef Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. I, SIAM J. Numer. Anal. 46 (2008), no. 6, 3006–3031.MathSciNetCrossRef
14.
go back to reference Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. II, SIAM J. Numer. Anal. 47 (2009), no. 5, 3293–3324.MathSciNetCrossRef Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. II, SIAM J. Numer. Anal. 47 (2009), no. 5, 3293–3324.MathSciNetCrossRef
15.
go back to reference Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. Part III, Math. Comp. 81 (2012), no. 279, 1289–1326.MathSciNetCrossRef Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. Part III, Math. Comp. 81 (2012), no. 279, 1289–1326.MathSciNetCrossRef
16.
go back to reference Alexandre Ern, Thirupathi Gudi, Iain Smears, and Martin Vohralík, Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div), IMA J. Numer. Anal., 42, (2022), no, 2, 1023–1049.MathSciNetCrossRef Alexandre Ern, Thirupathi Gudi, Iain Smears, and Martin Vohralík, Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div), IMA J. Numer. Anal., 42, (2022), no, 2, 1023–1049.MathSciNetCrossRef
17.
go back to reference Richard S. Falk and Ragnar Winther, Local bounded cochain projections, Math. Comp. 83, (2014), no. 290, 2631–2656.MathSciNetCrossRef Richard S. Falk and Ragnar Winther, Local bounded cochain projections, Math. Comp. 83, (2014), no. 290, 2631–2656.MathSciNetCrossRef
18.
go back to reference Richard S. Falk and Ragnar Winther, Double complexes and local cochain projections Numer. Methods Partial Differential Equations 31 (2015), no. 2, 541–551.MathSciNetCrossRef Richard S. Falk and Ragnar Winther, Double complexes and local cochain projections Numer. Methods Partial Differential Equations 31 (2015), no. 2, 541–551.MathSciNetCrossRef
19.
go back to reference Richard S. Falk and Ragnar Winther, The Bubble Transform: A New Tool for Analysis of Finite Element Methods, Found. Comput. Math., 16 (2016), no. 1, 297–328MathSciNetCrossRef Richard S. Falk and Ragnar Winther, The Bubble Transform: A New Tool for Analysis of Finite Element Methods, Found. Comput. Math., 16 (2016), no. 1, 297–328MathSciNetCrossRef
20.
go back to reference Jens M. Melenk and C. Rojik, On commuting p-version projection-based interpolation on tetrahedra, Math. Comp. 89 (2020), 45–87. Jens M. Melenk and C. Rojik, On commuting p-version projection-based interpolation on tetrahedra, Math. Comp. 89 (2020), 45–87.
21.
go back to reference Rafael Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the\(h\)-\(p\)version of the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), no. 1, 282–314.MathSciNetCrossRef Rafael Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the\(h\)-\(p\)version of the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), no. 1, 282–314.MathSciNetCrossRef
22.
go back to reference Joachim Schöberl, A multilevel decomposition result in H(curl). In: Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, edited by P.H.P. Wesseling and C.W. Oosterlee (2005). Joachim Schöberl, A multilevel decomposition result in H(curl). In: Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, edited by P.H.P. Wesseling and C.W. Oosterlee (2005).
23.
go back to reference Joachim Schöberl, Jens M. Melenk, Clemens Pechstein, and Sabine Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, 28(1) (2008), IMA J. Numer. Anal. 28 (2008), no. 1, 1–24. Joachim Schöberl, Jens M. Melenk, Clemens Pechstein, and Sabine Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, 28(1) (2008), IMA J. Numer. Anal. 28 (2008), no. 1, 1–24.
Metadata
Title
The Bubble Transform and the de Rham Complex
Authors
Richard S. Falk
Ragnar Winther
Publication date
20-09-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09589-1

Premium Partner