Skip to main content
Top

05-11-2024 | Original Paper

The complex-type k-Padovan sequences and their applications

Authors: Ömür Deveci, Anthony G. Shannon, Özgür Erdağ, Güntaç Ceco

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we define the complex-type k-Padovan numbers and then give the relationships between the \(\left( 1,k-1\right)\)-bonacci numbers, the k -Padovan numbers and the complex-type k-Padovan numbers by matrix method. In addition, we study the complex-type k-Padovan sequence modulo m and then we show that for some m the periods of the complex type k-Padovan and k-Padovan sequences modulo m are related. Furthermore, we extend the complex-type k-Padovan sequences to groups. Finally, we obtain the periods of the complex-type 4, 5, 6-Padovan sequences in the semidihedral group \(SD_{2^{m}}\), \(\left( m\ge 4\right)\) with respect to the generating pairs \(\left( x,y\right)\) and \(\left( y,x\right)\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adam, M., Assimakis, N.: \(k\)-Step sum and \(m\)-step gap Fibonacci sequence. Int. Scho. Res. Not. 2014(1), 374902 (2014) Adam, M., Assimakis, N.: \(k\)-Step sum and \(m\)-step gap Fibonacci sequence. Int. Scho. Res. Not. 2014(1), 374902 (2014)
2.
4.
go back to reference Bravo, J.J., Herrera, J.L.: Generalized Padovan sequences. Commun. Korean Math. Soc. 37(4), 977–988 (2022)MathSciNet Bravo, J.J., Herrera, J.L.: Generalized Padovan sequences. Commun. Korean Math. Soc. 37(4), 977–988 (2022)MathSciNet
5.
go back to reference Campbell, C.M., Campbell, P.P.: On the Fibonacci length of powers of dihedral groups. In: Applications of Fibonacci numbers, Howard F.T (ed), Kluwer Academic Publisher, Dordrecht, vol. 9, pp. 69-85(2004) Campbell, C.M., Campbell, P.P.: On the Fibonacci length of powers of dihedral groups. In: Applications of Fibonacci numbers, Howard F.T (ed), Kluwer Academic Publisher, Dordrecht, vol. 9, pp. 69-85(2004)
6.
go back to reference Campbell, C.M., Doostie, H., Robertson, E.F.: Fibonacci length of generating pairs in groups. In: Bergum, G.E. (ed.) Applications of Fibonacci numbers. Springer, vol. 3, pp. 27–35. Kluwer Academic Publishers, Dordrecht, (1990) Campbell, C.M., Doostie, H., Robertson, E.F.: Fibonacci length of generating pairs in groups. In: Bergum, G.E. (ed.) Applications of Fibonacci numbers. Springer, vol. 3, pp. 27–35. Kluwer Academic Publishers, Dordrecht, (1990)
7.
go back to reference Deveci, Ö., Karaduman, E.: On the Padovan \(p\)-numbers. Hacet. J. Math. Stat. 46(4), 579–592 (2017)MathSciNet Deveci, Ö., Karaduman, E.: On the Padovan \(p\)-numbers. Hacet. J. Math. Stat. 46(4), 579–592 (2017)MathSciNet
8.
go back to reference Deveci, Ö., Hulku, S., Shannon, A.G.: On the co-complex-type \(k\)-Fibonacci numbers. Chaos Solitons Fractals. 153, 111522 (2021)MathSciNetCrossRef Deveci, Ö., Hulku, S., Shannon, A.G.: On the co-complex-type \(k\)-Fibonacci numbers. Chaos Solitons Fractals. 153, 111522 (2021)MathSciNetCrossRef
9.
go back to reference Deveci, Ö., Shannon, A.G.: The complex-type \(k\)-Fibonacci sequences and their applications. Commun. Algebra. 49(3), 1352–1367 (2021)MathSciNetCrossRef Deveci, Ö., Shannon, A.G.: The complex-type \(k\)-Fibonacci sequences and their applications. Commun. Algebra. 49(3), 1352–1367 (2021)MathSciNetCrossRef
11.
go back to reference Deveci, Ö., Gulliver, A., Hulku S., Apaydin, S.: Application of \(\left( r,k\right)\)-bonacci sequences (Submitted) Deveci, Ö., Gulliver, A., Hulku S., Apaydin, S.: Application of \(\left( r,k\right)\)-bonacci sequences (Submitted)
12.
go back to reference Dişkaya, O., Menken, H.: On the pulsating Padovan sequence. Notes Number Theor Discret. Math. 30(1), 1–7 (2024)CrossRef Dişkaya, O., Menken, H.: On the pulsating Padovan sequence. Notes Number Theor Discret. Math. 30(1), 1–7 (2024)CrossRef
13.
go back to reference Doostie, H., Hashemi, M.: Fibonacci lengths involving the Wall number \(K(n)\). J. Appl. Math. Comput. 20(1–2), 171–180 (2006)MathSciNetCrossRef Doostie, H., Hashemi, M.: Fibonacci lengths involving the Wall number \(K(n)\). J. Appl. Math. Comput. 20(1–2), 171–180 (2006)MathSciNetCrossRef
14.
go back to reference Dummit, D.S., Foote, R.: Abstract algebra, 3rd edn., pp. 71–72. Wiley, New Jersey (2004) Dummit, D.S., Foote, R.: Abstract algebra, 3rd edn., pp. 71–72. Wiley, New Jersey (2004)
15.
go back to reference Erdağ, Ö., Halıcı, S., Deveci, Ö.: The complex-type Padovan-p sequences. Math. Moravica. 26(1), 77–88 (2022)MathSciNetCrossRef Erdağ, Ö., Halıcı, S., Deveci, Ö.: The complex-type Padovan-p sequences. Math. Moravica. 26(1), 77–88 (2022)MathSciNetCrossRef
16.
go back to reference Falcon, S., Plaza, A.: \(k\)-Fibonacci sequences modulo \(m\). Chaos Solitons Fractals. 41(1), 497–504 (2009)CrossRef Falcon, S., Plaza, A.: \(k\)-Fibonacci sequences modulo \(m\). Chaos Solitons Fractals. 41(1), 497–504 (2009)CrossRef
17.
go back to reference Gorenstein, D.: Finite groups. AMS Chelsea Publishing, pp. 188–195 (1980) Gorenstein, D.: Finite groups. AMS Chelsea Publishing, pp. 188–195 (1980)
18.
go back to reference Hashemi, M., Pirzadeh, M.: \(t\)-nacci Sequences in some special groups of order \(m3\). Mah. Rep. 20(4), 389–399 (2018) Hashemi, M., Pirzadeh, M.: \(t\)-nacci Sequences in some special groups of order \(m3\). Mah. Rep. 20(4), 389–399 (2018)
19.
20.
22.
go back to reference Karaduman, E., Aydın, H.: \(k\)-nacci sequences in some special groups of finite order. Math. Comput. Modell. 50(1–2), 53–58 (2009)MathSciNetCrossRef Karaduman, E., Aydın, H.: \(k\)-nacci sequences in some special groups of finite order. Math. Comput. Modell. 50(1–2), 53–58 (2009)MathSciNetCrossRef
23.
go back to reference Kılıç, E., Taşçı, D.: On the generalized order- \(k\) Fibonacci and Lucas numbers. Rocky Mt. J. Math. 36(6), 1915–1926 (2006)MathSciNetCrossRef Kılıç, E., Taşçı, D.: On the generalized order- \(k\) Fibonacci and Lucas numbers. Rocky Mt. J. Math. 36(6), 1915–1926 (2006)MathSciNetCrossRef
25.
go back to reference Köme, C.: Factorizations and eigenvalues of the \((r, k)\) -bonacci matrices. Comput. Appl. Math. 42(4), 185 (2023)MathSciNetCrossRef Köme, C.: Factorizations and eigenvalues of the \((r, k)\) -bonacci matrices. Comput. Appl. Math. 42(4), 185 (2023)MathSciNetCrossRef
26.
go back to reference Lancaster, P., Tismenetsky, M.: The theory of matrices: with applications. Elsevier, Amsterdam (1985) Lancaster, P., Tismenetsky, M.: The theory of matrices: with applications. Elsevier, Amsterdam (1985)
27.
go back to reference Lee, G., Kim, J.: On the Padovan codes and the Padovan cubes. Symmetry 15(2), 266 (2023)CrossRef Lee, G., Kim, J.: On the Padovan codes and the Padovan cubes. Symmetry 15(2), 266 (2023)CrossRef
28.
go back to reference Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge U.P, Cambridge (1994)CrossRef Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge U.P, Cambridge (1994)CrossRef
30.
go back to reference Lu, K., Wang, J.: \(k\)-step Fibonacci sequence modulo \(m\). Util. Math. 71, 169–177 (2006)MathSciNet Lu, K., Wang, J.: \(k\)-step Fibonacci sequence modulo \(m\). Util. Math. 71, 169–177 (2006)MathSciNet
31.
go back to reference Mehraban, E., Gulliver, T.A., Boulaaras, S.M., Hosseini, K., Hincal, E.: New sequences from the generalized Pell \(p\)-numbers and mersenne numbers and their application in cryptography. AIMS Math. 9(5), 13537–13552 (2024)MathSciNetCrossRef Mehraban, E., Gulliver, T.A., Boulaaras, S.M., Hosseini, K., Hincal, E.: New sequences from the generalized Pell \(p\)-numbers and mersenne numbers and their application in cryptography. AIMS Math. 9(5), 13537–13552 (2024)MathSciNetCrossRef
32.
33.
go back to reference Özkan, E., Aydın, H., Dikici, R.: \(3\)-step Fibonacci series modulo \(m\). Appl. Math. Comput. 143(1), 165–172 (2003)MathSciNet Özkan, E., Aydın, H., Dikici, R.: \(3\)-step Fibonacci series modulo \(m\). Appl. Math. Comput. 143(1), 165–172 (2003)MathSciNet
34.
go back to reference Özkan, E.: Truncated Lucas sequences and its period. Appl. Math. Comput. 232, 285–291 (2014)MathSciNet Özkan, E.: Truncated Lucas sequences and its period. Appl. Math. Comput. 232, 285–291 (2014)MathSciNet
35.
go back to reference Shannon, A.G.: Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quart. 12(3), 281–287 (1974)MathSciNetCrossRef Shannon, A.G.: Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quart. 12(3), 281–287 (1974)MathSciNetCrossRef
36.
go back to reference Shannon, A.G.: Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quart. 12(4), 327–335 (1974)MathSciNetCrossRef Shannon, A.G.: Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quart. 12(4), 327–335 (1974)MathSciNetCrossRef
37.
go back to reference Tas, S., Karaduman, E.: The Padovan sequences in finite groups. Chiang Mai J. Sci. 41(2), 456–462 (2014)MathSciNet Tas, S., Karaduman, E.: The Padovan sequences in finite groups. Chiang Mai J. Sci. 41(2), 456–462 (2014)MathSciNet
38.
go back to reference Tasci, D., Firengiz, M.C.: Incomplete Fibonacci and Lucas \(p\) -numbers. Math. Comput. Modell. 52(9–10), 1763–1770 (2010)MathSciNetCrossRef Tasci, D., Firengiz, M.C.: Incomplete Fibonacci and Lucas \(p\) -numbers. Math. Comput. Modell. 52(9–10), 1763–1770 (2010)MathSciNetCrossRef
Metadata
Title
The complex-type k-Padovan sequences and their applications
Authors
Ömür Deveci
Anthony G. Shannon
Özgür Erdağ
Güntaç Ceco
Publication date
05-11-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00672-4

Premium Partner