Skip to main content
Top

2017 | OriginalPaper | Chapter

The Compressible Shear Layer of a Mach Reflection

Authors : R. E. Hall, B. W. Skews, R. T. Paton

Published in: 30th International Symposium on Shock Waves 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A shear layer exists between two flows of different properties such as velocity or density. A finite thickness exists across a shear layer due to a velocity gradient forming on each side. The associated shear creates a region of mixing that increases in thickness from the point where the fluids first meet. Previous studies on shear layers [1, 2] revealed that the growth rate decreases as the shear velocity increases. Brown and Roshko [3] studied incompressible shear layers of different velocity and density ratios. Papamoschou [1] compared the visual growth rate of compressible shear layers to their incompressible values at the same velocity and density ratios. These values were plotted against M c , a parameter derived by Bogdanoff [4] in an attempt to investigate and correlate the effect of compressibility on the growth rate of the turbulent shear layer. Rikanati et al. [2] measured the spread angle of shear layers in a Mach reflection for a Mach number range of 1.55 to 2.78 and proposed a theoretical model similar to that found in Dimotakis [5]. The spread angle of the shear layer increased to a maximum of 8 before decreasing with the effect of compressibility. For Reynolds numbers (Re/mm) below 2 × 103 the theoretical model proposed by Rikanati failed to match the experimental spread angles. Previous work by Rubidge and Skews [6] revealed the Kelvin-Helmholtz Instability (KHI) occurring along the shear layer for Mach numbers of 1.34, 1.46 and 1.61. The spread angle of the shear layer was found to be approximately half of Rikanati’s measured angle, for the same Reynolds number.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Papamoschou, D., Roshko, A.: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477 (1988)CrossRef Papamoschou, D., Roshko, A.: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477 (1988)CrossRef
2.
go back to reference Rikanati, A., Sadot, O., Ben-Dor, G., Schvarts, D., Kuribayashi, T., Takayama, K.: Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96–17, 1–4 (2006) Rikanati, A., Sadot, O., Ben-Dor, G., Schvarts, D., Kuribayashi, T., Takayama, K.: Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96–17, 1–4 (2006)
3.
go back to reference Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)CrossRef Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)CrossRef
4.
go back to reference Bogdanoff, D.W.: Compressibility effects in turbulent shear layers. AIAA 21–6, 926–927 (1983)CrossRef Bogdanoff, D.W.: Compressibility effects in turbulent shear layers. AIAA 21–6, 926–927 (1983)CrossRef
5.
go back to reference Dimotakis, P.E.: Two-dimensional shear-layer entrainment. AIAA 24–11, 1791–1796 (1986)CrossRef Dimotakis, P.E.: Two-dimensional shear-layer entrainment. AIAA 24–11, 1791–1796 (1986)CrossRef
6.
go back to reference Rubidge, S.R., Skews, B.W.: Shear-layer instability in the Mach reflection of shock waves. Shock Waves 24–5, 479–488 (2014)CrossRef Rubidge, S.R., Skews, B.W.: Shear-layer instability in the Mach reflection of shock waves. Shock Waves 24–5, 479–488 (2014)CrossRef
7.
go back to reference von Neumann, J.: Explosives Research Report No. 12: Oblique Reflection of Shocks. Bureau of Ordinance, Navy Department, Washington DC (1943) von Neumann, J.: Explosives Research Report No. 12: Oblique Reflection of Shocks. Bureau of Ordinance, Navy Department, Washington DC (1943)
8.
go back to reference Olim, M., Dewey, J.M.: A revised three-shock solution for the Mach reflection of weak shocks (1. 1 < M i  < 1. 5). Shock Waves 2, 167–176 (1992) Olim, M., Dewey, J.M.: A revised three-shock solution for the Mach reflection of weak shocks (1. 1 < M i  < 1. 5). Shock Waves 2, 167–176 (1992)
Metadata
Title
The Compressible Shear Layer of a Mach Reflection
Authors
R. E. Hall
B. W. Skews
R. T. Paton
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46213-4_113

Premium Partners