Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 9/2015

01-09-2015 | Original Article

The connection between cellular mechanoregulation and tissue patterns during bone healing

Authors: Felix Repp, Andreas Vetter, Georg N. Duda, Richard Weinkamer

Published in: Medical & Biological Engineering & Computing | Issue 9/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The formation of different tissues in the callus during secondary bone healing is at least partly influenced by mechanical stimuli. We use computer simulations to test the consequences of different hypotheses of the mechanoregulation at the cellular level on the patterns of tissues formed during healing. The computational study is based on an experiment on sheep, where after a tibial osteotomy, histological sections were harvested at different time points. In the simulations, we used a recently proposed basic phenomenological model, which allows ossification to occur either via endochondral or intramembranous ossification, but tries otherwise to employ a minimal number of simulation parameters. The model was extended to consider also the possibility of bone resorption and consequently allowing a description of the full healing progression till the restoration of the cortex. Specifically, we investigated how three changes in the mechanoregulation influence the resulting tissue patterns: (1) a time delay between stimulation of the cell and the formation of the tissue, (2) a variable mechanosensitivity of the cells, and (3) an independence of long time intervals of the soft tissue maturation from the mechanical stimulus. For all three scenarios, our simulations do not show qualitative differences in the time development of the tissue patterns. Largest differences were observed in the intermediate phases of healing in the amount and location of the cartilage. Interestingly, the course of healing was virtually unaltered in case of scenario (3) where tissue maturation proceeded independent of mechanical stimulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bastian P, Blatt M, Dedner A, Engwer C, Klofkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3):103–119CrossRef Bastian P, Blatt M, Dedner A, Engwer C, Klofkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3):103–119CrossRef
2.
go back to reference Burger EH, Klein-Nulend J, Veldhuijzen JP (1992) Mechanical stress and osteogenesis in vitro. J Bone Miner Res 7(Suppl 2):S397–S401CrossRefPubMed Burger EH, Klein-Nulend J, Veldhuijzen JP (1992) Mechanical stress and osteogenesis in vitro. J Bone Miner Res 7(Suppl 2):S397–S401CrossRefPubMed
4.
go back to reference Byrne DP, Lacroix D, Prendergast PJ (2011) Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 29(10):1496–1503. doi:10.1002/jor.21362 CrossRefPubMed Byrne DP, Lacroix D, Prendergast PJ (2011) Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 29(10):1496–1503. doi:10.​1002/​jor.​21362 CrossRefPubMed
6.
go back to reference Checa S, Prendergast PJ, Duda GN (2011) Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J Biomech 44(7):1237–1245CrossRefPubMed Checa S, Prendergast PJ, Duda GN (2011) Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J Biomech 44(7):1237–1245CrossRefPubMed
8.
go back to reference Currey J (1995) The validation of algorithms used to explain adaptive bone remodeling in bone. In: Odgaard A, Weinans H (eds) Bone structure and remodeling. World Scientific, Singapore, pp 9–13 Currey J (1995) The validation of algorithms used to explain adaptive bone remodeling in bone. In: Odgaard A, Weinans H (eds) Bone structure and remodeling. World Scientific, Singapore, pp 9–13
9.
go back to reference Duda GN, Eckert-Hübner K, Sokiranski R, Kreutner A, Miller R, Claes L (1997) Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomech 31(3):201–210CrossRef Duda GN, Eckert-Hübner K, Sokiranski R, Kreutner A, Miller R, Claes L (1997) Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomech 31(3):201–210CrossRef
10.
go back to reference Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21CrossRefPubMed Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21CrossRefPubMed
14.
go back to reference Garcia P, Histing T, Holstein J, Klein M, Laschke M, Matthys R, Ignatius A, Wildemann B, Lienau J, Peters A et al (2013) Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cells Mater 26:1–14 Garcia P, Histing T, Holstein J, Klein M, Laschke M, Matthys R, Ignatius A, Wildemann B, Lienau J, Peters A et al (2013) Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cells Mater 26:1–14
15.
go back to reference Garzon-Alvarado DA, Gutiérrez ML2, Calixto LF (2014) A computational model of clavicle bone formation: a mechano-biochemical hypothesis. Bone 61:132–137CrossRefPubMed Garzon-Alvarado DA, Gutiérrez ML2, Calixto LF (2014) A computational model of clavicle bone formation: a mechano-biochemical hypothesis. Bone 61:132–137CrossRefPubMed
17.
go back to reference Geris L, Vander Sloten J, Van Oosterwyck H, Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc A 367(1895):2031–2053. doi:10.1098/rsta.2008.0293 CrossRef Geris L, Vander Sloten J, Van Oosterwyck H, Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc A 367(1895):2031–2053. doi:10.​1098/​rsta.​2008.​0293 CrossRef
18.
go back to reference Geris L, Vandamme K, Naert I, Sloten JV, Van Oosterwyck H, Duyck J (2010) Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study. Tissue Eng A 16(11):3353–3361CrossRef Geris L, Vandamme K, Naert I, Sloten JV, Van Oosterwyck H, Duyck J (2010) Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study. Tissue Eng A 16(11):3353–3361CrossRef
19.
go back to reference Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11):1215–1228. doi:10.1369/jhc.6A6959.2006 PMID: 16864894CrossRefPubMed Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11):1215–1228. doi:10.​1369/​jhc.​6A6959.​2006 PMID: 16864894CrossRefPubMed
20.
go back to reference Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge
22.
go back to reference Gómez-Benito MJ, González-Torres LA, Reina-Romo E, Grasa J, Seral B, García-Aznar JM, Gómez-Benito MJ, González-Torres LA, Reina-Romo E, Grasa J, Seral B, García-Aznar JM (2011) Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models. Philos Trans R Soc A 369(1954):4278–4294. doi:10.1098/rsta.2011.0153 CrossRef Gómez-Benito MJ, González-Torres LA, Reina-Romo E, Grasa J, Seral B, García-Aznar JM, Gómez-Benito MJ, González-Torres LA, Reina-Romo E, Grasa J, Seral B, García-Aznar JM (2011) Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models. Philos Trans R Soc A 369(1954):4278–4294. doi:10.​1098/​rsta.​2011.​0153 CrossRef
23.
go back to reference Groothuis A, Duda GN, Wilson CJ, Thompson MS, Hunter MR, Simon P, Bail HJ, van Scherpenzeel KM, Kasper G (2010) Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation. Bone 47:438–444CrossRefPubMed Groothuis A, Duda GN, Wilson CJ, Thompson MS, Hunter MR, Simon P, Bail HJ, van Scherpenzeel KM, Kasper G (2010) Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation. Bone 47:438–444CrossRefPubMed
24.
go back to reference Henderson JH, Carter DR (2000) Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. J Orthop Res 18:829–834CrossRef Henderson JH, Carter DR (2000) Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. J Orthop Res 18:829–834CrossRef
26.
go back to reference Huang C, Ogawa R (2012) Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Tissue Eng Part A 18:2106–2113CrossRefPubMed Huang C, Ogawa R (2012) Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Tissue Eng Part A 18:2106–2113CrossRefPubMed
27.
go back to reference Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24(5):898–907. doi:10.1002/jor.20118 CrossRefPubMed Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24(5):898–907. doi:10.​1002/​jor.​20118 CrossRefPubMed
30.
go back to reference Isaksson H (2012) Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun 42:22–31CrossRef Isaksson H (2012) Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun 42:22–31CrossRef
31.
go back to reference Kasper G, Glaeser JD, Geissler S, Ode A, Tuischer J, Matziolis G, Perka C, Duda GN (2007) Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 25(8):1985–1994. doi:10.1634/stemcells.2006-0676 CrossRefPubMed Kasper G, Glaeser JD, Geissler S, Ode A, Tuischer J, Matziolis G, Perka C, Duda GN (2007) Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 25(8):1985–1994. doi:10.​1634/​stemcells.​2006-0676 CrossRefPubMed
32.
go back to reference Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res Embryo Today Rev 90(1):75–85. doi:10.1002/bdrc.20173 CrossRef Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res Embryo Today Rev 90(1):75–85. doi:10.​1002/​bdrc.​20173 CrossRef
34.
35.
go back to reference Kollmannsberger P, Bidan CM, Dunlop JWC, Fratzl P (2011) The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter 7(20):9549–9560. doi:10.1039/C1SM05588G CrossRef Kollmannsberger P, Bidan CM, Dunlop JWC, Fratzl P (2011) The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter 7(20):9549–9560. doi:10.​1039/​C1SM05588G CrossRef
37.
go back to reference Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1):14–21. doi:10.1007/BF02347690 CrossRefPubMed Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1):14–21. doi:10.​1007/​BF02347690 CrossRefPubMed
38.
go back to reference Manjubala I, Liu Y, Epari D, Roschger P, Schell H, Fratzl P, Duda G (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45(2):185–192CrossRefPubMed Manjubala I, Liu Y, Epari D, Roschger P, Schell H, Fratzl P, Duda G (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45(2):185–192CrossRefPubMed
39.
go back to reference Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953PubMedCentralCrossRefPubMed Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953PubMedCentralCrossRefPubMed
41.
go back to reference Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:359–368CrossRefPubMed Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:359–368CrossRefPubMed
42.
go back to reference Pauwels F (1960) Eine neue theorie ueber den einfluss mechanischer reize auf die differenzierung der stuetzgewebe. Anat Embryol 121(6):478–515. doi:10.1007/BF00523401 Pauwels F (1960) Eine neue theorie ueber den einfluss mechanischer reize auf die differenzierung der stuetzgewebe. Anat Embryol 121(6):478–515. doi:10.​1007/​BF00523401
43.
go back to reference Pelaez D, Arita N, Cheung HS (2012) Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun 417:1286–1291CrossRefPubMed Pelaez D, Arita N, Cheung HS (2012) Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun 417:1286–1291CrossRefPubMed
44.
go back to reference Perren S, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff H (ed) Current concepts of internal fixation of fractures. Springer, Berlin, pp 67–77O Perren S, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff H (ed) Current concepts of internal fixation of fractures. Springer, Berlin, pp 67–77O
48.
go back to reference Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk HD, Lienau J, Duda GN (2011) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347(3):567–573. doi:10.1007/s00441-011-1205-7 CrossRefPubMed Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk HD, Lienau J, Duda GN (2011) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347(3):567–573. doi:10.​1007/​s00441-011-1205-7 CrossRefPubMed
49.
go back to reference Steiner M, Claes L, Ignatius A, Niemeyer F, Simon U, Wehner T (2013) Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. J R Soc Interface 10(86). doi:10.1098/rsif.2013.0389 Steiner M, Claes L, Ignatius A, Niemeyer F, Simon U, Wehner T (2013) Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. J R Soc Interface 10(86). doi:10.​1098/​rsif.​2013.​0389
50.
go back to reference Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, Lu HH (2013) The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34(8):1942–1953PubMedCentralCrossRefPubMed Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, Lu HH (2013) The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34(8):1942–1953PubMedCentralCrossRefPubMed
52.
go back to reference Vetter A, Liu Y, Witt F, Manjubala I, Sander O, Epari D, Fratzl P, Duda G, Weinkamer R (2011) The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. J Biomech 44(3):517–523. doi:10.1016/j.jbiomech.2010.09.009 CrossRefPubMed Vetter A, Liu Y, Witt F, Manjubala I, Sander O, Epari D, Fratzl P, Duda G, Weinkamer R (2011) The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. J Biomech 44(3):517–523. doi:10.​1016/​j.​jbiomech.​2010.​09.​009 CrossRefPubMed
53.
go back to reference Vetter A, Witt F, Sander O, Duda GN, Weinkamer R (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobio 11(1–2):147–160. doi:10.1007/s10237-011-0299-x CrossRef Vetter A, Witt F, Sander O, Duda GN, Weinkamer R (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobio 11(1–2):147–160. doi:10.​1007/​s10237-011-0299-x CrossRef
55.
go back to reference Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82CrossRefPubMed Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82CrossRefPubMed
Metadata
Title
The connection between cellular mechanoregulation and tissue patterns during bone healing
Authors
Felix Repp
Andreas Vetter
Georg N. Duda
Richard Weinkamer
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 9/2015
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-015-1285-8

Other articles of this Issue 9/2015

Medical & Biological Engineering & Computing 9/2015 Go to the issue

Premium Partner