Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 10/2021

15-08-2021 | Original Research Article

The Defining Role of Plastic Deformation on Resistance to Aqueous Corrosion of Interstitial Free Steel

Authors: M. I. Khan, Aditya Prakash, H. K. Mehtani, P. Raut, Namit N. Pai, A. Sarkar, M. J. N. V. Prasad, S. Parida, I. Samajdar

Published in: Metallurgical and Materials Transactions A | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thirty-five ‘apparently’ recrystallized specimens were produced through a combination of cold rolling and recrystallization annealing. They had a range of average grain size (dav:18-467 μm), grain orientation spread (GOS: 0.31 to 1.24 deg) and volume fraction of ND||<111> (\({V}_{f}^{ND||<111>}\): 0.15-0.69). The GOS value, for individual grains or for an entire specimen, represented presence of ‘remnant’ cold work – existence of geometrically necessary dislocations and ‘minor’ orientation gradients. The resistance to aqueous corrosion was determined by this ‘remnant’ cold work, and not by average grain size or crystallographic texture. The role of mesoscopic distribution in plastic deformation, and the features of deformed microstructure, were then explored on the resistance to aqueous corrosion. Progressive plastic deformation, through laboratory cold rolling, brought reproducible non-monotonic corrosion responses. In particular, an increase in corrosion resistance (0 to 30 pct rolled) was followed by a drop (30-40 pct) and then an increase (> 40 pct rolling). These changes originated from the evolution in deformed microstructures: formation of near boundary orientation gradients and creation of low and high angle boundaries, respectively. A combination of microtexture and non-contact profilometry clearly established that deformation induced near boundary orientation gradients and grain-interior high angle grain boundaries provided resistance to aqueous corrosion, while low angle boundaries were detrimental.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials. Elsevier, Amsterdam, 2007. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials. Elsevier, Amsterdam, 2007.
2.
go back to reference D. Dwivedi, K. Lepková, and T. Becker: RSC Adv., 2017, vol. 7, pp. 4580–610. .CrossRef D. Dwivedi, K. Lepková, and T. Becker: RSC Adv., 2017, vol. 7, pp. 4580–610. .CrossRef
4.
go back to reference R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Re., 1994, vol. 39, pp. 129–72. .CrossRef R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Re., 1994, vol. 39, pp. 129–72. .CrossRef
6.
go back to reference I. Samajdar, B. Verlinden, and P. Van Houtte: Acta Mater., 1998, vol. 46, pp. 2751–63. .CrossRef I. Samajdar, B. Verlinden, and P. Van Houtte: Acta Mater., 1998, vol. 46, pp. 2751–63. .CrossRef
7.
go back to reference I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte: Acta Mater., 1998, vol. 47, pp. 55–65. .CrossRef I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte: Acta Mater., 1998, vol. 47, pp. 55–65. .CrossRef
8.
go back to reference R. Khatirkar, B. Vadavadagi, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 894–901. .CrossRef R. Khatirkar, B. Vadavadagi, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 894–901. .CrossRef
9.
10.
go back to reference I.I. Reformatskaya, I.G. Rodionova, Y.A. Bejlin, L.A. Nisel’son, and A.N. Podobaev: Zashchita Met., 2004, vol. 40, pp. 498–504. . I.I. Reformatskaya, I.G. Rodionova, Y.A. Bejlin, L.A. Nisel’son, and A.N. Podobaev: Zashchita Met., 2004, vol. 40, pp. 498–504. .
11.
go back to reference C.S. Brossia and G.A. Cragnolino: Corrosion., 2000, vol. 56, pp. 505–14. .CrossRef C.S. Brossia and G.A. Cragnolino: Corrosion., 2000, vol. 56, pp. 505–14. .CrossRef
12.
go back to reference K.D. Ralston and N. Birbilis: Corrosion., 2010, vol. 66, pp. 0750051–07500513. .CrossRef K.D. Ralston and N. Birbilis: Corrosion., 2010, vol. 66, pp. 0750051–07500513. .CrossRef
13.
go back to reference K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scr. Mater., 2010, vol. 63, pp. 1201–4. .CrossRef K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scr. Mater., 2010, vol. 63, pp. 1201–4. .CrossRef
14.
go back to reference K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta., 2011, vol. 56, pp. 1729–36. .CrossRef K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta., 2011, vol. 56, pp. 1729–36. .CrossRef
15.
16.
go back to reference C. Lei, X. Chen, Y. Li, Y. Chen, and B. Yang: Metals., 2019, vol. 9, pp. 872–83. .CrossRef C. Lei, X. Chen, Y. Li, Y. Chen, and B. Yang: Metals., 2019, vol. 9, pp. 872–83. .CrossRef
17.
go back to reference B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim: Mater. Sci. Eng. A., 2007, vol. 462, pp. 243–7. .CrossRef B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim: Mater. Sci. Eng. A., 2007, vol. 462, pp. 243–7. .CrossRef
18.
go back to reference G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74. .CrossRef G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74. .CrossRef
20.
go back to reference J. Jelinek, P. Neufeldt, and G.A. Pickup: Br. Corros. J., 1978, vol. 13, pp. 112–7. .CrossRef J. Jelinek, P. Neufeldt, and G.A. Pickup: Br. Corros. J., 1978, vol. 13, pp. 112–7. .CrossRef
21.
22.
23.
go back to reference S.A. Al-Duheisat and A.S. El-Amoush: Mater. Des., 2016, vol. 89, pp. 342–7. .CrossRef S.A. Al-Duheisat and A.S. El-Amoush: Mater. Des., 2016, vol. 89, pp. 342–7. .CrossRef
24.
go back to reference Z.A. Foroulis and H.H. Uhlig: J. Electrochem. Soc., 1964, vol. 111, p. 522. .CrossRef Z.A. Foroulis and H.H. Uhlig: J. Electrochem. Soc., 1964, vol. 111, p. 522. .CrossRef
25.
go back to reference R. Mondal, S.K. Bonagani, A. Lodh, T. Sharma, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Corrosion., 2019, vol. 75, pp. 1315–26. .CrossRef R. Mondal, S.K. Bonagani, A. Lodh, T. Sharma, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Corrosion., 2019, vol. 75, pp. 1315–26. .CrossRef
26.
go back to reference R. Mondal, A. Rajagopal, S.K. Bonagani, A. Prakash, D. Fuloria, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Metall. Mater. Trans. A., 2020, vol. 51, pp. 2480–94. .CrossRef R. Mondal, A. Rajagopal, S.K. Bonagani, A. Prakash, D. Fuloria, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Metall. Mater. Trans. A., 2020, vol. 51, pp. 2480–94. .CrossRef
27.
go back to reference R. Mondal, S. Kumar Bonagani, P. Raut, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: J. Electrochem. Soc., 2020, vol. 167, p. 101501. .CrossRef R. Mondal, S. Kumar Bonagani, P. Raut, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: J. Electrochem. Soc., 2020, vol. 167, p. 101501. .CrossRef
28.
go back to reference B.T. Lu, H. Yu, and J.L. Luo: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1430–5. .CrossRef B.T. Lu, H. Yu, and J.L. Luo: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1430–5. .CrossRef
29.
30.
go back to reference R. Rana, S.B. Singh, and O.N. Mohanty: Corros. Eng. Sci. Technol., 2011, vol. 46, pp. 517–20. .CrossRef R. Rana, S.B. Singh, and O.N. Mohanty: Corros. Eng. Sci. Technol., 2011, vol. 46, pp. 517–20. .CrossRef
31.
32.
go back to reference I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng. A., 1997, vol. 238, pp. 343–50. .CrossRef I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng. A., 1997, vol. 238, pp. 343–50. .CrossRef
33.
34.
go back to reference G.H. Akbari and C.M. Sellars: Acta Metall., 1997, vol. 45, pp. 5047–58. . G.H. Akbari and C.M. Sellars: Acta Metall., 1997, vol. 45, pp. 5047–58. .
35.
go back to reference V.M. Nandedkar, I. Samajdar, and K. Narasimhan: ISIJ Int., 2001, vol. 41, pp. 1517–23. .CrossRef V.M. Nandedkar, I. Samajdar, and K. Narasimhan: ISIJ Int., 2001, vol. 41, pp. 1517–23. .CrossRef
36.
go back to reference B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069–81. .CrossRef B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069–81. .CrossRef
37.
go back to reference R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R.H. Petrov, P. Pant, and I. Samajdar: Mater. Sci. Forum., 2011, vol. 702–703, pp. 782–5. .CrossRef R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R.H. Petrov, P. Pant, and I. Samajdar: Mater. Sci. Forum., 2011, vol. 702–703, pp. 782–5. .CrossRef
38.
go back to reference I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Scr. Mater., 1997, vol. 37, pp. 869–74. .CrossRef I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Scr. Mater., 1997, vol. 37, pp. 869–74. .CrossRef
40.
go back to reference N. Perez: Electrochemistry and corrosion science. vol. 412, Kluwer Academic Publishers, Boston, 2004.CrossRef N. Perez: Electrochemistry and corrosion science. vol. 412, Kluwer Academic Publishers, Boston, 2004.CrossRef
41.
go back to reference ASTM NACE Standard, G31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2012 ASTM NACE Standard, G31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2012
42.
go back to reference P. Pearson and A. Cousins: Assessment of Corrosion Inamine-Based Post-Combustion Capture of Carbon Dioxide Systems. Elsevier, Amsterdam, 2016. P. Pearson and A. Cousins: Assessment of Corrosion Inamine-Based Post-Combustion Capture of Carbon Dioxide Systems. Elsevier, Amsterdam, 2016.
43.
44.
go back to reference ASTM Standard G59-97 (Reapproved 2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International (West Conshohocken, PA, USA (2014). ASTM Standard G59-97 (Reapproved 2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International (West Conshohocken, PA, USA (2014).
45.
go back to reference ASTM Standard G106 − 89 (Reapproved 2015) Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM International (West Conshohocken, PA, USA 2015). ASTM Standard G106 − 89 (Reapproved 2015) Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM International (West Conshohocken, PA, USA 2015).
46.
go back to reference J.R. Macdonald and E. Barsoukov: Impedance spectroscopy: theory, experiment, and applications. 2nd ed. Wiley, Hoboken, 2005, pp. 1–13.CrossRef J.R. Macdonald and E. Barsoukov: Impedance spectroscopy: theory, experiment, and applications. 2nd ed. Wiley, Hoboken, 2005, pp. 1–13.CrossRef
47.
go back to reference ASTM Standard G102 − 89 (Reapproved 1994) Standard Practice for Calculation of Corrosion Rate and related Information from Electrochemical Measurements. ASTM International (West Conshohocken, PA, USA, 1989). ASTM Standard G102 − 89 (Reapproved 1994) Standard Practice for Calculation of Corrosion Rate and related Information from Electrochemical Measurements. ASTM International (West Conshohocken, PA, USA, 1989).
48.
go back to reference N. Srinivasan, V. Kain, N. Birbilis, K.V. Mani Krishna, S. Shekhawat, and I. Samajdar: Corros. Sci., 2015, vol. 100, pp. 544–55. .CrossRef N. Srinivasan, V. Kain, N. Birbilis, K.V. Mani Krishna, S. Shekhawat, and I. Samajdar: Corros. Sci., 2015, vol. 100, pp. 544–55. .CrossRef
49.
go back to reference M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett: Acta Mater., 2008, vol. 56, pp. 3098–108. .CrossRef M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett: Acta Mater., 2008, vol. 56, pp. 3098–108. .CrossRef
50.
go back to reference S. Raveendra, S. Mishra, K.V. Mani Krishna, H. Weiland, and I. Samajdar: Metall. Mater. Trans. A., 2008, vol. 39, pp. 2760–71. .CrossRef S. Raveendra, S. Mishra, K.V. Mani Krishna, H. Weiland, and I. Samajdar: Metall. Mater. Trans. A., 2008, vol. 39, pp. 2760–71. .CrossRef
51.
go back to reference D. Raabe, Z. Zhao, S.J. Park, and F. Roters: Acta Mater., 2002, vol. 50, pp. 421–40. .CrossRef D. Raabe, Z. Zhao, S.J. Park, and F. Roters: Acta Mater., 2002, vol. 50, pp. 421–40. .CrossRef
52.
go back to reference L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94. .CrossRef L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94. .CrossRef
53.
go back to reference S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar: Scr. Mater., 2009, vol. 61, pp. 273–6. .CrossRef S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar: Scr. Mater., 2009, vol. 61, pp. 273–6. .CrossRef
54.
go back to reference N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74. .CrossRef N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74. .CrossRef
55.
go back to reference A. Schreiber, J.W. Schultze, M.M. Lohrengel, F. Kármán, and E. Kálmán: Electrochim. Acta., 2006, vol. 51, pp. 2625–30. .CrossRef A. Schreiber, J.W. Schultze, M.M. Lohrengel, F. Kármán, and E. Kálmán: Electrochim. Acta., 2006, vol. 51, pp. 2625–30. .CrossRef
56.
go back to reference M.T. Simnad and U.R. Evans: Trans. Faraday Soc., 1950, vol. 46, pp. 175–86. .CrossRef M.T. Simnad and U.R. Evans: Trans. Faraday Soc., 1950, vol. 46, pp. 175–86. .CrossRef
58.
59.
go back to reference S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, and Z.D. Zhang: J. Phys. Chem. B., 2006, vol. 110, pp. 377–82. .CrossRef S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, and Z.D. Zhang: J. Phys. Chem. B., 2006, vol. 110, pp. 377–82. .CrossRef
60.
go back to reference G. Ma, G. Wu, W. Shi, S. Xiang, Q. Chen, and X. Mao: Corros. Sci., 2020, vol. 176, pp. 1–10. .CrossRef G. Ma, G. Wu, W. Shi, S. Xiang, Q. Chen, and X. Mao: Corros. Sci., 2020, vol. 176, pp. 1–10. .CrossRef
61.
go back to reference T. Yamamoto, K. Fushimi, S. Miura, and H. Konno: J. Electrochem. Soc., 2010, vol. 157, p. C231. .CrossRef T. Yamamoto, K. Fushimi, S. Miura, and H. Konno: J. Electrochem. Soc., 2010, vol. 157, p. C231. .CrossRef
62.
go back to reference G.I. Taylor: J. Inst. Met., 1938, vol. 62, p. 62. . G.I. Taylor: J. Inst. Met., 1938, vol. 62, p. 62. .
64.
go back to reference J. Galán-López and L.A.I. Kestens: Metall. Mater. Trans. A., 2018, vol. 49, pp. 5745–62. .CrossRef J. Galán-López and L.A.I. Kestens: Metall. Mater. Trans. A., 2018, vol. 49, pp. 5745–62. .CrossRef
65.
go back to reference D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30, pp. 1087–119. .CrossRef D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30, pp. 1087–119. .CrossRef
66.
go back to reference A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh: Acta Metall., 1986, vol. 34, pp. 1999–2009. .CrossRef A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin, and H.W. Erbsloh: Acta Metall., 1986, vol. 34, pp. 1999–2009. .CrossRef
67.
go back to reference B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19. .CrossRef B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19. .CrossRef
68.
69.
go back to reference S.K. Mishra, S.G. Desai, P. Pant, K. Narasimhan, and I. Samajdar: Int. J. Mater. Form., 2009, vol. 2, pp. 59–67. .CrossRef S.K. Mishra, S.G. Desai, P. Pant, K. Narasimhan, and I. Samajdar: Int. J. Mater. Form., 2009, vol. 2, pp. 59–67. .CrossRef
70.
go back to reference E. Aernoudt, P. Van Houtte, T. Leffers. "Plastic Deformation and Fracture of Materials, ed. by H. Mughrabi, (Vol. 6 of Materials Science and Technology: A comprehensive trea™ent, ed. by RW Cahn, P. Haasen and EJ Kramer)." (1993) p. 89–136. E. Aernoudt, P. Van Houtte, T. Leffers. "Plastic Deformation and Fracture of Materials, ed. by H. Mughrabi, (Vol. 6 of Materials Science and Technology: A comprehensive trea™ent, ed. by RW Cahn, P. Haasen and EJ Kramer)." (1993) p. 89–136.
Metadata
Title
The Defining Role of Plastic Deformation on Resistance to Aqueous Corrosion of Interstitial Free Steel
Authors
M. I. Khan
Aditya Prakash
H. K. Mehtani
P. Raut
Namit N. Pai
A. Sarkar
M. J. N. V. Prasad
S. Parida
I. Samajdar
Publication date
15-08-2021
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 10/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06412-4

Other articles of this Issue 10/2021

Metallurgical and Materials Transactions A 10/2021 Go to the issue

Premium Partners