Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Development of Plate and Lath Morphology in Ni5Ge3

Authors: N. Haque, O. E. Jegede, A. M. Mullis

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

Drop-tube processing was used to solidify rapidly a congruently melting, single phase intermeallic Ni5Ge3. This process results in the production of powders with diameters that are between 850–53 μm. After etching that occurs at low cooling rates (850–150 μm diameter particles, 700–7800 K s–1), an isolated plate and lath microstructure in what is an otherwise featureless matrix constitutes the dominant solidification morphology. By contrast, when the cooling rates are higher (150–53 μm diameter particles, 7800–42 000 K s–1), it is isolated hexagonal crystallites within a featureless matrix, which constitute the dominant solidification morphology. The TEM analysis of selected area diffraction shows that plate and lath microstructures are variants of ε-Ni5Ge3, which are partially ordered. By contrast, the isolated hexagonal crystallites are revealed to be disordered. However, the featureless matrix of both microstructures are the fully ordered variant of the same compound. The plate and lath has a very different EBSD and GOS signatures to the hexagonal crystallites structure. Histogram of the correlated grain orientation angle distribution across grain orientation in plate and lath microstructure sample from the 300–212 μm fraction showing predominance of low angle grain boundaries. However, grain orientation in isolated hexagonal crystallites from 150–106 μm revealing the distribution typical of random grain orientation.
Literature
1.
go back to reference A. K. Vasudévan and J. J. Petrovic, “A comparative overview of molybdenum disilicide composites,” Mater. Sci. Eng., A 155, 1–17 (1992). CrossRef A. K. Vasudévan and J. J. Petrovic, “A comparative overview of molybdenum disilicide composites,” Mater. Sci. Eng., A 155, 1–17 (1992). CrossRef
2.
go back to reference D. M. Dimiduk, D. Miracle, and C. Ward, “Development of intermetallic materials for aerospace systems,” Mater. Sci. Technol. 8, 367–375 (1992). CrossRef D. M. Dimiduk, D. Miracle, and C. Ward, “Development of intermetallic materials for aerospace systems,” Mater. Sci. Technol. 8, 367–375 (1992). CrossRef
3.
go back to reference D. Banerjee, “Intermetallic compounds, Ti 3Al and its alloys,” in Intermetallic Compounds: Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1994). D. Banerjee, “Intermetallic compounds, Ti 3Al and its alloys,” in Intermetallic Compounds: Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1994).
4.
go back to reference F. H. Froes, C. Suryanarayana, and D. Eliezer, “Synthesis, properties and applications of titanium aluminides,” J. Mater. Sci. 27, 5113–5140 (1992). CrossRef F. H. Froes, C. Suryanarayana, and D. Eliezer, “Synthesis, properties and applications of titanium aluminides,” J. Mater. Sci. 27, 5113–5140 (1992). CrossRef
5.
go back to reference C. Liauo, H. Fu, I. Hsiao, and J. Huang, “On the β‑transus and order/disorder transition temperature in superplastic super α 2 Ti 3Al base alloy,” Mater. Sci. Eng., A 271, 275–285 (1999). CrossRef C. Liauo, H. Fu, I. Hsiao, and J. Huang, “On the β‑transus and order/disorder transition temperature in superplastic super α 2 Ti 3Al base alloy,” Mater. Sci. Eng., A 271, 275–285 (1999). CrossRef
6.
go back to reference Y. Koizumi, H. Katsumura, Y. Minamino, N. Tsuji, J. Lee, and H. Mori, “Growth kinetics of antiphase domain in Ti 3Al intermetallic compound,” Sci. Technol. Adv. Mater. 5, 19–28 (2004). CrossRef Y. Koizumi, H. Katsumura, Y. Minamino, N. Tsuji, J. Lee, and H. Mori, “Growth kinetics of antiphase domain in Ti 3Al intermetallic compound,” Sci. Technol. Adv. Mater. 5, 19–28 (2004). CrossRef
7.
go back to reference T. Radchenko, V. Tatarenko, H. Zapolsky, and D. Blavette, “Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy,” J. Alloy Compd. 452, 122–126 (2008). CrossRef T. Radchenko, V. Tatarenko, H. Zapolsky, and D. Blavette, “Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy,” J. Alloy Compd. 452, 122–126 (2008). CrossRef
8.
go back to reference S.-L. Wei, L.-J. Huang, J. Chang, S.-J. Yang, and L. Geng, “Substantial undercooling and rapid dendrite growth of liquid Ti–Al alloy,” Acta. Phys. Sin. 65, 096101 (2016). CrossRef S.-L. Wei, L.-J. Huang, J. Chang, S.-J. Yang, and L. Geng, “Substantial undercooling and rapid dendrite growth of liquid Ti–Al alloy,” Acta. Phys. Sin. 65, 096101 (2016). CrossRef
9.
go back to reference P. Nash, Phase Diagrams of Binary Nickel Alloys (ASM Int., Materials Park, OH, 1976), p. 35. P. Nash, Phase Diagrams of Binary Nickel Alloys (ASM Int., Materials Park, OH, 1976), p. 35.
10.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “Rapid solidification morphologies in Ni 3Ge: spherulites, dendrites and dense-branched fractal structures,” Intermetallics 76 70–77 (2016). CrossRef N. Haque, R. F. Cochrane, and A. M. Mullis, “Rapid solidification morphologies in Ni 3Ge: spherulites, dendrites and dense-branched fractal structures,” Intermetallics 76 70–77 (2016). CrossRef
11.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “The role of recrystallization in spontaneous grain refinement of rapidly solidified Ni 3Ge,” Metall. Mater. Trans. A 48, 5424–5431 (2017). CrossRef N. Haque, R. F. Cochrane, and A. M. Mullis, “The role of recrystallization in spontaneous grain refinement of rapidly solidified Ni 3Ge,” Metall. Mater. Trans. A 48, 5424–5431 (2017). CrossRef
12.
go back to reference M. Hyman, C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, “Microstructure evolution in TiAl alloys with B additions: conventional solidification,” Metall. Trans. A 20, 1847 (1989). CrossRef M. Hyman, C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, “Microstructure evolution in TiAl alloys with B additions: conventional solidification,” Metall. Trans. A 20, 1847 (1989). CrossRef
13.
go back to reference C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, “Microstructural analysis of rapidly solidified Ti–Al–X powders,” Mater. Sci. Eng., A 124, 83–101 (1990). CrossRef C. McCullough, J. Valencia, C. Levi, and R. Mehrabian, “Microstructural analysis of rapidly solidified Ti–Al–X powders,” Mater. Sci. Eng., A 124, 83–101 (1990). CrossRef
14.
go back to reference T. Broderick, A. Jackson, H. Jones, and F. Froes, “The effect of cooling conditions on the microstructure of rapidly solidified Ti–6Al–4V,” Metall. Trans. A 16, 1951–1959 (1985). CrossRef T. Broderick, A. Jackson, H. Jones, and F. Froes, “The effect of cooling conditions on the microstructure of rapidly solidified Ti–6Al–4V,” Metall. Trans. A 16, 1951–1959 (1985). CrossRef
15.
go back to reference G. Krauss and A. Marder, “The morphology of martensite in iron alloys,” Metall. Mater. Trans. B 2, 2343–2357 (1971). CrossRef G. Krauss and A. Marder, “The morphology of martensite in iron alloys,” Metall. Mater. Trans. B 2, 2343–2357 (1971). CrossRef
16.
go back to reference A. A. Popov, K. I. Lugovaya, E. N. Popova, V. V. Makarov, and M. A. Zhilyakova, “Metallography, features of the two-phase (α+ α 2) structure formation in the Ti–17 at % Al alloy,” Phys. Met. Metallogr. 121, 791–796 (2020). CrossRef A. A. Popov, K. I. Lugovaya, E. N. Popova, V. V. Makarov, and M. A. Zhilyakova, “Metallography, features of the two-phase (α+ α 2) structure formation in the Ti–17 at % Al alloy,” Phys. Met. Metallogr. 121, 791–796 (2020). CrossRef
17.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “Mechanical properties of rapidly solidified Ni 5Ge 3 intermetallic”, in TMS 2018 147th Annual Meeting & Exhibition (Springer-Verlag, New York, 2018), pp. 705–711. N. Haque, R. F. Cochrane, and A. M. Mullis, “Mechanical properties of rapidly solidified Ni 5Ge 3 intermetallic”, in TMS 2018 147th Annual Meeting & Exhibition (Springer-Verlag, New York, 2018), pp. 705–711.
18.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “Order-disorder morphologies in rapidly solidified ε/ε'-Ni 5Ge 3 intermetallic,” J. Alloy Compd. 707, 327–331 (2017). CrossRef N. Haque, R. F. Cochrane, and A. M. Mullis, “Order-disorder morphologies in rapidly solidified ε/ε'-Ni 5Ge 3 intermetallic,” J. Alloy Compd. 707, 327–331 (2017). CrossRef
19.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “Morphology of spherulites in rapidly solidified Ni 3Ge droplets,” Crystals 7, 100 (2017). CrossRef N. Haque, R. F. Cochrane, and A. M. Mullis, “Morphology of spherulites in rapidly solidified Ni 3Ge droplets,” Crystals 7, 100 (2017). CrossRef
20.
go back to reference N. Haque, R. F. Cochrane, and A. M. Mullis, “Disorder-order morphologies in drop-tube processed Ni 3Ge: Dendritic and seaweed growth,” J. Alloy Compd. 707, 327–331 (2017). CrossRef N. Haque, R. F. Cochrane, and A. M. Mullis, “Disorder-order morphologies in drop-tube processed Ni 3Ge: Dendritic and seaweed growth,” J. Alloy Compd. 707, 327–331 (2017). CrossRef
21.
go back to reference J. K. Mackenzie, “The distribution of rotation axes in random aggregate of cubic crystals,” Acta Metall. 12, 223–225 (1964). CrossRef J. K. Mackenzie, “The distribution of rotation axes in random aggregate of cubic crystals,” Acta Metall. 12, 223–225 (1964). CrossRef
Metadata
Title
The Development of Plate and Lath Morphology in Ni5Ge3
Authors
N. Haque
O. E. Jegede
A. M. Mullis
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140106