Skip to main content
Top

2024 | OriginalPaper | Chapter

The Diophantine Equation \(x^2+5^a7^b11^c19^d=4y^n\)

Author : Nguyen Xuan Tho

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the Diophantine equation, specifically the Lebesgue-Ramanujan-Nagell equation, which has a rich history and various solutions discovered by notable mathematicians. The author presents a main theorem that completely solves the equation under specific conditions, utilizing deep theorems on primitive divisors of Lucas sequences and computational methods. The chapter is structured with preliminaries, proofs of the main theorem, and several lemmas that tackle different cases of the equation. The use of MAGMA software for computations adds a modern twist to the traditional mathematical approach, making the solutions both rigorous and accessible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
  1. Beukers, F.: On the generalized Ramanujan-Nagell equation, I. Acta Arith. 38, 389–410 (1980/1981)
  2. Bhatter, S., Hoque, A., Sharma, R.: On the solutions of a Lebesgue-Nagell type equation. Acta Math. Hungar. 158(1), 17–26 (2019)MathSciNetView Article
  3. Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539, 75–122 (2001)
  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)
  5. Chakraborty, K., Hoque, A., Sharma, R.: Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations. Publ. Math. Debr. 97(3–4), 339–352 (2020)MathSciNetView Article
  6. Chakraborty, K., Hoque, A., Srinivas, K.: On the Diophantine equation \(cx^2+p^{2m}=4y^n\). Result Math. 76, 57 (2021)
  7. Chakraborty, K., Hoque, A.: On the Diophantine equation \(dx^2+p^{2a}q^{2b}=4y^p\). Result Math. 77, 18 (2022)
  8. Le, M.H.: On the Diophantine equation \(x^2 + D = 4p^n\). J. Number Theory 41, 87–97 (1992)MathSciNetView Article
  9. Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15, 473–523 (2020)MathSciNet
  10. Ljunggren, W.: On the Diophantine equation \(x^2 + D = 4y^q\). Monatsh. Math. 75, 136–143 (1971)MathSciNetView Article
  11. Ljunggren, W.: New theorems concerning the Diophantine equation \(x^2 + D = 4y^q\). Acta Arith. 21(2), 183–191 (1972)MathSciNetView Article
  12. Ljunggren, W.: The Diophantine equation \(x^2+x + 1 = y^3\). Acta Math. 75, 1–21 (1942)View Article
  13. Luca, F., Tengely, Sz., Togbé, A.: On the Diophantine equation \(x^2+C=4y^n\). Ann. Math. Qué. 33(2), 171–184 (2009)
  14. Nagell, T.: Des équations indéterminées \(x^2+x+1=y^q\) et \(x^2+x+1=3y^q\). Norsk Mat. Forenings Skrifter Ser. I 14(2), 1–14 (1921)
  15. Nagell, T.: The Diophantine equation \(x^2 + 7 = 2^n\). Ark. Mat. 4(2–3), 185–187 (1961)MathSciNetView Article
  16. Ramanujan, S.: Question 446. J. Indian Math. Soc. 5, 20 (1913), Collected papers, Cambridge University Press, p. 327 (1927)
  17. Schinzel, A.: On two theorems of Gelfond and some of their applications. Acta Arith. 13, 177–236 (1967)MathSciNetView Article
  18. Skinner, C.: The Diophantine equation \(x^2=4q^n-4q + 1\). Pacific J. Math. 139, 303–309 (1989)MathSciNetView Article
  19. Tho, N.X.: The Diophantine equation \(x^2+3^a\cdot 5^b\cdot 7^c\cdot 19^d=4y^n\). Publ. Math. Debr. 102(1–2), 61–68 (2023)View Article
Metadata
Title
The Diophantine Equation
Author
Nguyen Xuan Tho
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_11

Premium Partner