Skip to main content
Top
Published in:

01-05-2024

The Duo of Visual Servoing and Deep Learning-Based Methods for Situation-Aware Disaster Management: A Comprehensive Review

Authors: Senthil Kumar Jagatheesaperumal, Mohammad Mehedi Hassan, Md. Rafiul Hassan, Giancarlo Fortino

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unmanned aerial vehicles (UAVs) have become essential in disaster management due to their ability to provide real-time situational awareness and support decision-making processes. Visual servoing, a technique that uses visual feedback to control the motion of a robotic system, has been used to improve the precision and accuracy of UAVs in disaster scenarios. The study integrates visual servoing to enhance UAV precision while exploring recent advancements in deep learning. This integration enhances the precision and efficiency of disaster response by enabling UAVs to navigate complex environments, identify critical areas for intervention, and provide actionable insights to decision-makers in real time. It discusses disaster management aspects like search and rescue, damage assessment, and situational awareness, while also analyzing the challenges associated with integrating visual servoing and deep learning into UAVs. This review article provides a comprehensive analysis to offer real-time situational awareness and decision support in disaster management. It highlights that deep learning along with visual servoing enhances precision and accuracy in disaster scenarios. The analysis also summarizes the challenges and the need for high computational power, data processing, and communication capabilities. UAVs, especially when combined with visual servoing and deep learning, play a crucial role in disaster management. The review underscores the potential benefits and challenges of integrating these technologies, emphasizing their significance in improving disaster response and recovery, with possible means of enhanced situational awareness and decision-making.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Cui F. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput Commun. 2020;150:818–27. Cui F. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput Commun. 2020;150:818–27.
4.
go back to reference Hildmann H, Kovacs E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPS) for disaster response, civil security and public safety. Drones. 2019;3(3):59. Hildmann H, Kovacs E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPS) for disaster response, civil security and public safety. Drones. 2019;3(3):59.
5.
go back to reference Machkour Z, Ortiz-Arroyo D, Durdevic P. Classical and deep learning based visual servoing systems: a survey on state of the art. J Intell Robot Syst. 2022;104(1):1–27. Machkour Z, Ortiz-Arroyo D, Durdevic P. Classical and deep learning based visual servoing systems: a survey on state of the art. J Intell Robot Syst. 2022;104(1):1–27.
6.
go back to reference Hai X, Qiu H, Wen C, Feng Q. A novel distributed situation awareness consensus approach for UAV swarm systems. IEEE Trans Intell Transp Syst. 2023;24(12):14706–17. Hai X, Qiu H, Wen C, Feng Q. A novel distributed situation awareness consensus approach for UAV swarm systems. IEEE Trans Intell Transp Syst. 2023;24(12):14706–17.
7.
go back to reference Xiong C, Li Q, Lu X. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Autom Constr. 2020;109:102994. Xiong C, Li Q, Lu X. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Autom Constr. 2020;109:102994.
8.
go back to reference Atif M, Ahmad R, Ahmad W, Zhao L, Rodrigues JJ. UAV-assisted wireless localization for search and rescue. IEEE Syst J. 2021;15(3):3261–72. Atif M, Ahmad R, Ahmad W, Zhao L, Rodrigues JJ. UAV-assisted wireless localization for search and rescue. IEEE Syst J. 2021;15(3):3261–72.
9.
go back to reference Cabreira TM, Brisolara LB, Ferreira PR Jr. Survey on coverage path planning with unmanned aerial vehicles. Drones. 2019;3(1):4. Cabreira TM, Brisolara LB, Ferreira PR Jr. Survey on coverage path planning with unmanned aerial vehicles. Drones. 2019;3(1):4.
10.
go back to reference Mozaffari M, Saad W, Bennis M, Nam Y-H, Debbah M. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tutorials. 2019;21(3):2334–60. Mozaffari M, Saad W, Bennis M, Nam Y-H, Debbah M. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tutorials. 2019;21(3):2334–60.
11.
go back to reference Sanchez-Lopez JL, Fernández RAS, Bavle H, Sampedro C, Molina M, Pestana J, Campoy P. Aerostack: an architecture and open-source software framework for aerial robotics. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2016. pp. 332–41. Sanchez-Lopez JL, Fernández RAS, Bavle H, Sampedro C, Molina M, Pestana J, Campoy P. Aerostack: an architecture and open-source software framework for aerial robotics. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2016. pp. 332–41.
13.
go back to reference Mardani A, Chiaberge M, Giaccone P. Communication-aware UAV path planning. IEEE. Access. 2019;7:52609–21. Mardani A, Chiaberge M, Giaccone P. Communication-aware UAV path planning. IEEE. Access. 2019;7:52609–21.
14.
go back to reference Fotia L, Delicato F, Fortino G. Trust in edge-based internet of things architectures: state of the art and research challenges. ACM Comput Surv. 2023;55(9):1–34. Fotia L, Delicato F, Fortino G. Trust in edge-based internet of things architectures: state of the art and research challenges. ACM Comput Surv. 2023;55(9):1–34.
15.
go back to reference Yang Z, Xu W, Shikh-Bahaei M. Energy efficient UAV communication with energy harvesting. IEEE Trans Veh Technol. 2019;69(2):1913–27. Yang Z, Xu W, Shikh-Bahaei M. Energy efficient UAV communication with energy harvesting. IEEE Trans Veh Technol. 2019;69(2):1913–27.
16.
go back to reference Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wireless Commun. 2017;16(6):3747–60. Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wireless Commun. 2017;16(6):3747–60.
17.
go back to reference Nguyen M-N, Nguyen LD, Duong TQ, Tuan HD. Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wireless Commun Lett. 2018;8(1):225–8. Nguyen M-N, Nguyen LD, Duong TQ, Tuan HD. Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wireless Commun Lett. 2018;8(1):225–8.
18.
go back to reference Tan X, Zuo Z, Su S, Guo X, Sun X, Jiang D. Performance analysis of routing protocols for UAV communication networks. IEEE Access. 2020;8:92212–24. Tan X, Zuo Z, Su S, Guo X, Sun X, Jiang D. Performance analysis of routing protocols for UAV communication networks. IEEE Access. 2020;8:92212–24.
19.
go back to reference Ji B, Li Y, Zhou B, Li C, Song K, Wen H. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting. IEEE Access. 2019;7:38738–47. Ji B, Li Y, Zhou B, Li C, Song K, Wen H. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting. IEEE Access. 2019;7:38738–47.
20.
go back to reference Ahmad A, Cheema AA, Finlay D. A survey of radio propagation channel modelling for low altitude flying base stations. Comput Netw. 2020;171:107122. Ahmad A, Cheema AA, Finlay D. A survey of radio propagation channel modelling for low altitude flying base stations. Comput Netw. 2020;171:107122.
21.
go back to reference Coombes M, Chen W-H, Liu C. Boustrophedon coverage path planning for UAV aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2017. pp. 1563–71. Coombes M, Chen W-H, Liu C. Boustrophedon coverage path planning for UAV aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2017. pp. 1563–71.
22.
go back to reference Li W, Wang L, Fei A. Minimizing packet expiration loss with path planning in UAV-assisted data sensing. IEEE Wireless Commun Lett. 2019;8(6):1520–3. Publisher: IEEE. Li W, Wang L, Fei A. Minimizing packet expiration loss with path planning in UAV-assisted data sensing. IEEE Wireless Commun Lett. 2019;8(6):1520–3. Publisher: IEEE.
23.
go back to reference Wang C, Wang J, Shen Y, Zhang X. Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Trans Veh Technol. 2019;68(3):2124–36. Wang C, Wang J, Shen Y, Zhang X. Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Trans Veh Technol. 2019;68(3):2124–36.
24.
go back to reference Xu T, Wang N, Lin H, Sun Z. UAV autonomous reconnaissance route planning based on deep reinforcement learning. In: 2019 IEEE International Conference on Unmanned Systems (ICUS). IEEE; 2019. pp. 761–6. Xu T, Wang N, Lin H, Sun Z. UAV autonomous reconnaissance route planning based on deep reinforcement learning. In: 2019 IEEE International Conference on Unmanned Systems (ICUS). IEEE; 2019. pp. 761–6.
25.
go back to reference Wan K, Gao X, Hu Z, Zhang W. A RDA-based deep reinforcement learning approach for autonomous motion planning of UAV in dynamic unknown environments. JPhCS. 2020;1487(1): 012006. Wan K, Gao X, Hu Z, Zhang W. A RDA-based deep reinforcement learning approach for autonomous motion planning of UAV in dynamic unknown environments. JPhCS. 2020;1487(1): 012006.
26.
go back to reference Li B, Mu C, Wu B. A survey of vision based autonomous aerial refueling for unmanned aerial vehicles. In: 2012 Third International Conference on Intelligent Control and Information Processing. IEEE; 2012. pp. 1–6. Li B, Mu C, Wu B. A survey of vision based autonomous aerial refueling for unmanned aerial vehicles. In: 2012 Third International Conference on Intelligent Control and Information Processing. IEEE; 2012. pp. 1–6.
27.
go back to reference Kong W, Zhou D, Zhang D, Zhang J. Vision-based autonomous landing system for unmanned aerial vehicle: a survey. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). IEEE; 2014. pp. 1–8. Kong W, Zhou D, Zhang D, Zhang J. Vision-based autonomous landing system for unmanned aerial vehicle: a survey. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). IEEE; 2014. pp. 1–8.
28.
go back to reference Máthé K, Buşoniu L. Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors. 2015;15(7):14887–916. Máthé K, Buşoniu L. Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors. 2015;15(7):14887–916.
30.
go back to reference Jenssen R, Roverso D, et al. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int J Electr Power Energy Syst. 2018;99:107–20. Jenssen R, Roverso D, et al. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int J Electr Power Energy Syst. 2018;99:107–20.
31.
go back to reference Fraga-Lamas P, Ramos L, Mondéjar-Guerra V, Fernández-Caramés TM. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance. Remote Sens. 2019;11(18):2144. Fraga-Lamas P, Ramos L, Mondéjar-Guerra V, Fernández-Caramés TM. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance. Remote Sens. 2019;11(18):2144.
32.
go back to reference Samaras S, Diamantidou E, Ataloglou D, Sakellariou N, Vafeiadis A, Magoulianitis V, Lalas A, Dimou A, Zarpalas D, Votis K, et al. Deep learning on multi sensor data for counter UAV applications-a systematic review. Sensors. 2019;19(22):4837. Samaras S, Diamantidou E, Ataloglou D, Sakellariou N, Vafeiadis A, Magoulianitis V, Lalas A, Dimou A, Zarpalas D, Votis K, et al. Deep learning on multi sensor data for counter UAV applications-a systematic review. Sensors. 2019;19(22):4837.
33.
go back to reference Mittal P, Singh R, Sharma A. Deep learning-based object detection in low-altitude UAV datasets: a survey. Image Vis Comput. 2020;104:104046. Mittal P, Singh R, Sharma A. Deep learning-based object detection in low-altitude UAV datasets: a survey. Image Vis Comput. 2020;104:104046.
34.
go back to reference Azimi M, Eslamlou AD, Pekcan G. Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review. Sensors. 2020;20(10):2778. Azimi M, Eslamlou AD, Pekcan G. Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review. Sensors. 2020;20(10):2778.
37.
go back to reference Diez Y, Kentsch S, Fukuda M, Caceres MLL, Moritake K, Cabezas M. Deep learning in forestry using UAV-acquired RGB data: a practical review. Remote Sens. 2021;13(14):2837. Diez Y, Kentsch S, Fukuda M, Caceres MLL, Moritake K, Cabezas M. Deep learning in forestry using UAV-acquired RGB data: a practical review. Remote Sens. 2021;13(14):2837.
38.
go back to reference Srivastava S, Narayan S, Mittal S. A survey of deep learning techniques for vehicle detection from UAV images. J Syst Archit. 2021;117:102152. Srivastava S, Narayan S, Mittal S. A survey of deep learning techniques for vehicle detection from UAV images. J Syst Archit. 2021;117:102152.
40.
go back to reference Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Recent advances on UAV and deep learning for early crop diseases identification: a short review. In: 2021 International Conference on Information Technology (ICIT). IEEE; 2021. pp. 334–9. Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Recent advances on UAV and deep learning for early crop diseases identification: a short review. In: 2021 International Conference on Information Technology (ICIT). IEEE; 2021. pp. 334–9.
41.
go back to reference Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2021;33(11):6047–67. Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2021;33(11):6047–67.
42.
go back to reference Wu J, Jin Z, Liu A, Yu L, Yang F. A survey of learning-based control of robotic visual servoing systems. J Frankl Inst. 2022;359(1):556–77. Wu J, Jin Z, Liu A, Yu L, Yang F. A survey of learning-based control of robotic visual servoing systems. J Frankl Inst. 2022;359(1):556–77.
43.
go back to reference Munawar HS, Hammad AW, Waller ST, Thaheem MJ, Shrestha A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: a review. Sustainability. 2021;13(14):7925. Munawar HS, Hammad AW, Waller ST, Thaheem MJ, Shrestha A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: a review. Sustainability. 2021;13(14):7925.
44.
go back to reference Bouguettaya A, Zarzour H, Taberkit AM, Kechida A. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Process. 2022;190:108309. Bouguettaya A, Zarzour H, Taberkit AM, Kechida A. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Process. 2022;190:108309.
45.
go back to reference Adams SM, Friedland CJ. A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In: 9th International Workshop on Remote Sensing for Disaster Response, vol 8. 2011. pp. 1–8. Adams SM, Friedland CJ. A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In: 9th International Workshop on Remote Sensing for Disaster Response, vol 8. 2011. pp. 1–8.
46.
go back to reference Li G, Zhou X, Yin J, Xiao Q. An UAV scheduling and planning method for post-disaster survey. Int Arch Photogramm Remote Sens Spat Inf Sci. 2014;40(2):169. Li G, Zhou X, Yin J, Xiao Q. An UAV scheduling and planning method for post-disaster survey. Int Arch Photogramm Remote Sens Spat Inf Sci. 2014;40(2):169.
47.
go back to reference Yuan C, Zhang Y, Liu Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res. 2015;45(7):783–92. Yuan C, Zhang Y, Liu Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res. 2015;45(7):783–92.
48.
go back to reference Chan B, Guan H, Jo J, Blumenstein M. Towards UAV-based bridge inspection systems: a review and an application perspective. Struct Monit Maint. 2015;2(3):283–300. Chan B, Guan H, Jo J, Blumenstein M. Towards UAV-based bridge inspection systems: a review and an application perspective. Struct Monit Maint. 2015;2(3):283–300.
49.
go back to reference Erdelj M, Natalizio E. UAV-assisted disaster management: applications and open issues. In: 2016 International Conference on Computing, Networking and Communications (ICNC). IEEE; 2016. pp. 1–5. Erdelj M, Natalizio E. UAV-assisted disaster management: applications and open issues. In: 2016 International Conference on Computing, Networking and Communications (ICNC). IEEE; 2016. pp. 1–5.
50.
go back to reference Gomez C, Purdie H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring-a review. Geoenvironmental Disasters. 2016;3(1):1–11. Gomez C, Purdie H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring-a review. Geoenvironmental Disasters. 2016;3(1):1–11.
51.
go back to reference Liu H, Wang X, Li L, Tu X, Wang Y, Liao X, Zhang L. Application of UAV aerial photogrammetry for rockfall disaster survey. J Eng Geol. 2017;25(Z1):82–7. Liu H, Wang X, Li L, Tu X, Wang Y, Liao X, Zhang L. Application of UAV aerial photogrammetry for rockfall disaster survey. J Eng Geol. 2017;25(Z1):82–7.
52.
go back to reference Hinterhofer T, Pfennigbauer M, Ullrich A, Rothbacher D, Schraml S, Hofstätter M. UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations. In: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, vol 10629. 2018. pp. 106290. International Society for Optics and Photonics. Hinterhofer T, Pfennigbauer M, Ullrich A, Rothbacher D, Schraml S, Hofstätter M. UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations. In: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, vol 10629. 2018. pp. 106290. International Society for Optics and Photonics.
53.
go back to reference Grogan S, Pellerin R, Gamache M. The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG. 2018. pp. 1–13. Grogan S, Pellerin R, Gamache M. The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG. 2018. pp. 1–13.
54.
go back to reference Yu M, Yang C, Li Y. Big data in natural disaster management: a review. Geosciences. 2018;8(5):165. Yu M, Yang C, Li Y. Big data in natural disaster management: a review. Geosciences. 2018;8(5):165.
55.
go back to reference Recchiuto CT, Sgorbissa A. Post-disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches. J Field Rob. 2018;35(4):459–90. Recchiuto CT, Sgorbissa A. Post-disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches. J Field Rob. 2018;35(4):459–90.
56.
go back to reference Kim S, Kim T, Sim J. Applicability assessment of UAV mapping for disaster damage investigation in Korea. Int Arch Photogramm Remote Sens Spat Inf Sci. 2019. pp. 209–14. Kim S, Kim T, Sim J. Applicability assessment of UAV mapping for disaster damage investigation in Korea. Int Arch Photogramm Remote Sens Spat Inf Sci. 2019. pp. 209–14.
57.
go back to reference Popescu D, Stoican F, Stamatescu G, Chenaru O, Ichim L. A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors. 2019;19(21):4690. Popescu D, Stoican F, Stamatescu G, Chenaru O, Ichim L. A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors. 2019;19(21):4690.
58.
go back to reference Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A. UAV-based structural damage mapping: a review. ISPRS Int J Geo Inf. 2020;9(1):14. Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A. UAV-based structural damage mapping: a review. ISPRS Int J Geo Inf. 2020;9(1):14.
59.
go back to reference Nikhil N, Shreyas S, Vyshnavi G, Yadav S. Unmanned aerial vehicles (UAV) in disaster management applications. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE; 2020. pp. 140–8. Nikhil N, Shreyas S, Vyshnavi G, Yadav S. Unmanned aerial vehicles (UAV) in disaster management applications. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE; 2020. pp. 140–8.
60.
go back to reference Akram T, Awais M, Naqvi R, Ahmed A, Naeem M. Multicriteria UAV base stations placement for disaster management. IEEE Syst J. 2020;14(3):3475–82. Akram T, Awais M, Naqvi R, Ahmed A, Naeem M. Multicriteria UAV base stations placement for disaster management. IEEE Syst J. 2020;14(3):3475–82.
61.
go back to reference Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B. Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J. 2020;8(21):16047–71. Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B. Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J. 2020;8(21):16047–71.
62.
go back to reference Qadir Z, Ullah F, Munawar HS, Al-Turjman F. Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review. Comput Commun. 2021;168:114–35. Qadir Z, Ullah F, Munawar HS, Al-Turjman F. Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review. Comput Commun. 2021;168:114–35.
63.
go back to reference Garnica-Peña RJ, Alcántara-Ayala I. The use of UAVs for landslide disaster risk research and disaster risk management: a literature review. J Mt Sci. 2021;18(2):482–98. Garnica-Peña RJ, Alcántara-Ayala I. The use of UAVs for landslide disaster risk research and disaster risk management: a literature review. J Mt Sci. 2021;18(2):482–98.
64.
go back to reference Furutani T, Minami M. Drones for disaster risk reduction and crisis response. In: Emerging Technologies for Disaster Resilience. Springer; 2021. pp. 51–62. Furutani T, Minami M. Drones for disaster risk reduction and crisis response. In: Emerging Technologies for Disaster Resilience. Springer; 2021. pp. 51–62.
65.
go back to reference Khan A, Gupta S, Gupta SK. Cooperative control between multi-UAVs for maximum coverage in disaster management: review and proposed model. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE; 2022. pp. 271–7. Khan A, Gupta S, Gupta SK. Cooperative control between multi-UAVs for maximum coverage in disaster management: review and proposed model. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE; 2022. pp. 271–7.
66.
go back to reference Munawar HS, Mojtahedi M, Hammad AW, Kouzani A, Mahmud MP. Disruptive technologies as a solution for disaster risk management: a review. Sci Total Environ. 2022;806:151351. Munawar HS, Mojtahedi M, Hammad AW, Kouzani A, Mahmud MP. Disruptive technologies as a solution for disaster risk management: a review. Sci Total Environ. 2022;806:151351.
67.
go back to reference D’Aniello G, Gravina R, Gaeta M, Fortino G. Situation aware sensor-based wearable computing systems: a reference architecture-driven review. IEEE Sensors J. 2022;22(14):13853–63. D’Aniello G, Gravina R, Gaeta M, Fortino G. Situation aware sensor-based wearable computing systems: a reference architecture-driven review. IEEE Sensors J. 2022;22(14):13853–63.
68.
go back to reference Yang J, You X, Wu G, Hassan MM, Almogren A, Guna J. Application of reinforcement learning in UAV cluster task scheduling. Futur Gener Comput Syst. 2019;95:140–8. Yang J, You X, Wu G, Hassan MM, Almogren A, Guna J. Application of reinforcement learning in UAV cluster task scheduling. Futur Gener Comput Syst. 2019;95:140–8.
69.
go back to reference AlAli ZT, Alabady SA. A survey of disaster management and SAR operations using sensors and supporting techniques. Int J Disaster Risk Reduct. 2022;82:103295. AlAli ZT, Alabady SA. A survey of disaster management and SAR operations using sensors and supporting techniques. Int J Disaster Risk Reduct. 2022;82:103295.
70.
go back to reference Haider SA, Zikria YB, Garg S, Ahmad S, Hassan MM, AlQahtani SA. Ai-based energy-efficient UAV-assisted IoT data collection with integrated trajectory and resource optimization. IEEE Wirel Commun. 2022;29(6):30–6. Haider SA, Zikria YB, Garg S, Ahmad S, Hassan MM, AlQahtani SA. Ai-based energy-efficient UAV-assisted IoT data collection with integrated trajectory and resource optimization. IEEE Wirel Commun. 2022;29(6):30–6.
71.
go back to reference Chhikara P, Tekchandani R, Kumar N, Guizani M, Hassan MM. Federated learning and autonomous UAVs for hazardous zone detection and AGI prediction in IoT environment. IEEE Internet Things J. 2021;8(20):15456–67. Chhikara P, Tekchandani R, Kumar N, Guizani M, Hassan MM. Federated learning and autonomous UAVs for hazardous zone detection and AGI prediction in IoT environment. IEEE Internet Things J. 2021;8(20):15456–67.
72.
go back to reference Chien W-C, Hassan MM, Alsanad A, Fortino G. UAV-assisted joint wireless power transfer and data collection mechanism for sustainable precision agriculture in 5G. IEEE Micro. 2021;42(1):25–32. Chien W-C, Hassan MM, Alsanad A, Fortino G. UAV-assisted joint wireless power transfer and data collection mechanism for sustainable precision agriculture in 5G. IEEE Micro. 2021;42(1):25–32.
73.
go back to reference Savaglio C, Fortino G. A simulation-driven methodology for IoT data mining based on edge computing. ACM Trans Internet Technol (TOIT). 2021;21(2):1–22. Savaglio C, Fortino G. A simulation-driven methodology for IoT data mining based on edge computing. ACM Trans Internet Technol (TOIT). 2021;21(2):1–22.
74.
go back to reference Zhang H, Wang L, Tian T, Yin J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021;13(6):1221. Zhang H, Wang L, Tian T, Yin J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021;13(6):1221.
75.
go back to reference Barbosa Júnior MR, Moreira BRDA, Brito Filho ALD, Tedesco D, Shiratsuchi LS, Silva RPD. UAVs to monitor and manage sugarcane: integrative review. Agronomy. 2022;12(3):661. Barbosa Júnior MR, Moreira BRDA, Brito Filho ALD, Tedesco D, Shiratsuchi LS, Silva RPD. UAVs to monitor and manage sugarcane: integrative review. Agronomy. 2022;12(3):661.
76.
go back to reference Zhang R, Li H, Duan K, You S, Liu K, Wang F, Hu Y. Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote Sens. 2020;12(16):2621. Zhang R, Li H, Duan K, You S, Liu K, Wang F, Hu Y. Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote Sens. 2020;12(16):2621.
77.
go back to reference França Pereira F, Mendes Sussel Gonçalves T, Jorge Coelho Simões S, Roberto Magalhães de Andrade M, Luiz Lopes Reiss M, Fortes Cavalcante Renk J, orreia da Silva Santos T. Comparison of lidar-and UAV-derived data for landslide susceptibility mapping using random forest algorithm. Landslides. 2023;20(3):579–600. França Pereira F, Mendes Sussel Gonçalves T, Jorge Coelho Simões S, Roberto Magalhães de Andrade M, Luiz Lopes Reiss M, Fortes Cavalcante Renk J, orreia da Silva Santos T. Comparison of lidar-and UAV-derived data for landslide susceptibility mapping using random forest algorithm. Landslides. 2023;20(3):579–600.
78.
go back to reference Kashihara H, Sumantyo JTS, Izumi Y, Ito K, Gao S, Namba K. X-band microstrip array antenna for UAV onboard full circularly polarized synthetic aperture radar. IEEE Trans Antennas Propag. 2023;71(2):1943–8. Kashihara H, Sumantyo JTS, Izumi Y, Ito K, Gao S, Namba K. X-band microstrip array antenna for UAV onboard full circularly polarized synthetic aperture radar. IEEE Trans Antennas Propag. 2023;71(2):1943–8.
79.
go back to reference Rezwan S, Choi W. Artificial intelligence approaches for UAV navigation: recent advances and future challenges. IEEE Access. 2022;10:26320–39. Rezwan S, Choi W. Artificial intelligence approaches for UAV navigation: recent advances and future challenges. IEEE Access. 2022;10:26320–39.
80.
go back to reference Alptekin A, Çelik MÖ, Doğan Y, Yakar M. Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal. 2019;1(1):12–6. Alptekin A, Çelik MÖ, Doğan Y, Yakar M. Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal. 2019;1(1):12–6.
81.
go back to reference Koutalakis P, Tzoraki O, Zaimes G. UAVs for hydrologic scopes: application of a low-cost UAV to estimate surface water velocity by using three different image-based methods. Drones. 2019;3(1):14. Koutalakis P, Tzoraki O, Zaimes G. UAVs for hydrologic scopes: application of a low-cost UAV to estimate surface water velocity by using three different image-based methods. Drones. 2019;3(1):14.
82.
go back to reference Lynch KM, Banks VA, Roberts AP, Radcliffe S, Plant KL. Maritime autonomous surface ships: can we learn from unmanned aerial vehicle incidents using the perceptual cycle model? Ergonomics. 2023;66(6):772–90. Lynch KM, Banks VA, Roberts AP, Radcliffe S, Plant KL. Maritime autonomous surface ships: can we learn from unmanned aerial vehicle incidents using the perceptual cycle model? Ergonomics. 2023;66(6):772–90.
83.
go back to reference Kumar JS, Gupta A, Tanwar S, Kumar N, Akleylek S. Security enhancement in cellular networks employing D2D friendly jammer for V2V communication. Clust Comput. 2023;26(2):865–78. Kumar JS, Gupta A, Tanwar S, Kumar N, Akleylek S. Security enhancement in cellular networks employing D2D friendly jammer for V2V communication. Clust Comput. 2023;26(2):865–78.
84.
go back to reference Uddin K, Matin MA. Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Prog Disaster Sci. 2021;11:100185. Uddin K, Matin MA. Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Prog Disaster Sci. 2021;11:100185.
85.
go back to reference Perera C, Jayasooriya D, Jayasiri G, Randil C, Bandara C, Siriwardana C, Dissanayake R, Hippola S, Sylva K, Kamalrathne T, et al. Evaluation of gaps in early warning mechanisms and evacuation procedures for coastal communities in Sri Lanka. Int J Disaster Resil Built Environ. 2020;11(3):415–33. Perera C, Jayasooriya D, Jayasiri G, Randil C, Bandara C, Siriwardana C, Dissanayake R, Hippola S, Sylva K, Kamalrathne T, et al. Evaluation of gaps in early warning mechanisms and evacuation procedures for coastal communities in Sri Lanka. Int J Disaster Resil Built Environ. 2020;11(3):415–33.
86.
go back to reference Gundran CPD, Lam HY, Tuazon ACA, Cleofas JV, Garcia FB, Puli TEM. Simulation training needs assessment for disaster preparedness and disaster response among selected agencies in National Capital Region, Philippines. Int J Disaster Risk Reduct. 2023;94:103824. Gundran CPD, Lam HY, Tuazon ACA, Cleofas JV, Garcia FB, Puli TEM. Simulation training needs assessment for disaster preparedness and disaster response among selected agencies in National Capital Region, Philippines. Int J Disaster Risk Reduct. 2023;94:103824.
87.
go back to reference Cavdur F, Sebatli A. A decision support tool for allocating temporary-disaster-response facilities. Decis Support Syst. 2019;127:113145. Cavdur F, Sebatli A. A decision support tool for allocating temporary-disaster-response facilities. Decis Support Syst. 2019;127:113145.
88.
go back to reference Sufri S, Dwirahmadi F, Phung D, Rutherford S. A systematic review of community engagement (CE) in disaster early warning systems (EWSS). Progress in Disaster Science. 2020;5:100058. Sufri S, Dwirahmadi F, Phung D, Rutherford S. A systematic review of community engagement (CE) in disaster early warning systems (EWSS). Progress in Disaster Science. 2020;5:100058.
89.
go back to reference Khankeh HR, Hosseini SH, Farrokhi M, Hosseini MA, Amanat N. Early warning system models and components in emergency and disaster: a systematic literature review protocol. Syst Rev. 2019;8:1–4. Khankeh HR, Hosseini SH, Farrokhi M, Hosseini MA, Amanat N. Early warning system models and components in emergency and disaster: a systematic literature review protocol. Syst Rev. 2019;8:1–4.
90.
go back to reference Goniewicz K, Burkle FM. Disaster early warning systems: the potential role and limitations of emerging text and data messaging mitigation capabilities. Disaster Med Public Health Prep. 2019;13(4):709–12. Goniewicz K, Burkle FM. Disaster early warning systems: the potential role and limitations of emerging text and data messaging mitigation capabilities. Disaster Med Public Health Prep. 2019;13(4):709–12.
91.
go back to reference Esposito M, Palma L, Belli A, Sabbatini L, Pierleoni P. Recent advances in internet of things solutions for early warning systems: a review. Sensors. 2022;22(6):2124. Esposito M, Palma L, Belli A, Sabbatini L, Pierleoni P. Recent advances in internet of things solutions for early warning systems: a review. Sensors. 2022;22(6):2124.
92.
go back to reference Damaševičius R, Bacanin N, Misra S. From sensors to safety: internet of emergency services (IOES) for emergency response and disaster management. J Sens Actuator Netw. 2023;12(3):41. Damaševičius R, Bacanin N, Misra S. From sensors to safety: internet of emergency services (IOES) for emergency response and disaster management. J Sens Actuator Netw. 2023;12(3):41.
93.
go back to reference Kucharczyk M, Hugenholtz CH. Remote sensing of natural hazard-related disasters with small drones: global trends, biases, and research opportunities. Remote Sens Environ. 2021;264:112577. Kucharczyk M, Hugenholtz CH. Remote sensing of natural hazard-related disasters with small drones: global trends, biases, and research opportunities. Remote Sens Environ. 2021;264:112577.
94.
go back to reference Abdalzaher MS, Krichen M, Yiltas-Kaplan D, Ben Dhaou I, Adoni WYH. Early detection of earthquakes using IoT and cloud infrastructure: a survey. Sustainability. 2023;15(15):11713. Abdalzaher MS, Krichen M, Yiltas-Kaplan D, Ben Dhaou I, Adoni WYH. Early detection of earthquakes using IoT and cloud infrastructure: a survey. Sustainability. 2023;15(15):11713.
95.
go back to reference Sánchez-Partida D, Martínez-Flores J-L, Caballero-Morales S-O, Cano-Olivos P, Sánchez-Partida D, Rosas-Guevara GG, Martínez-Flores JL, Casiano-Ramos A. Risk analysis of unmanned aerial systems to supply survival kits in search-and-rescue (SAR) operations. Disaster Risk Reduction in Mexico: Methodologies, Case Studies, and Prospective Views. 2021;1:223–44. Sánchez-Partida D, Martínez-Flores J-L, Caballero-Morales S-O, Cano-Olivos P, Sánchez-Partida D, Rosas-Guevara GG, Martínez-Flores JL, Casiano-Ramos A. Risk analysis of unmanned aerial systems to supply survival kits in search-and-rescue (SAR) operations. Disaster Risk Reduction in Mexico: Methodologies, Case Studies, and Prospective Views. 2021;1:223–44.
96.
go back to reference Hasan MM, Rahman MA, Sedigh A, Khasanah AU, Asyhari AT, Tao H, Bakar SA. Search and rescue operation in flooded areas: a survey on emerging sensor networking-enabled IoT-oriented technologies and applications. Cogn Syst Res. 2021;67:104–23. Hasan MM, Rahman MA, Sedigh A, Khasanah AU, Asyhari AT, Tao H, Bakar SA. Search and rescue operation in flooded areas: a survey on emerging sensor networking-enabled IoT-oriented technologies and applications. Cogn Syst Res. 2021;67:104–23.
97.
go back to reference Perrucci DV. Methods for scenario modeling of post-disaster temporary housing. PhD thesis, Vanderbilt University. 2021. Perrucci DV. Methods for scenario modeling of post-disaster temporary housing. PhD thesis, Vanderbilt University. 2021.
98.
go back to reference Di B, Li J, Dandoulaki M, Cruz AM, Zhang R, Niu Z. Household recovery strategies in Longmen Mountain area, Sichuan, China, following the 2008 Wenchuan earthquake disaster. Nat Hazards. 2020;104:123–37. Di B, Li J, Dandoulaki M, Cruz AM, Zhang R, Niu Z. Household recovery strategies in Longmen Mountain area, Sichuan, China, following the 2008 Wenchuan earthquake disaster. Nat Hazards. 2020;104:123–37.
99.
go back to reference Bahmani H, Zhang W. A conceptual framework for integrated management of disasters recovery projects. Nat Hazards. 2022;113(2):859–85. Bahmani H, Zhang W. A conceptual framework for integrated management of disasters recovery projects. Nat Hazards. 2022;113(2):859–85.
100.
go back to reference Mojtahedi M, Sunindijo RY, Lestari F, Suparni, Wijaya O. Developing hospital emergency and disaster management index using TOPSIS method. Sustainability. 2021;13(9):5213. Mojtahedi M, Sunindijo RY, Lestari F, Suparni, Wijaya O. Developing hospital emergency and disaster management index using TOPSIS method. Sustainability. 2021;13(9):5213.
102.
go back to reference Lee I, Babu V, Caesar M, Nicol D. Deep reinforcement learning for UAV-assisted emergency response. In: MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. 2020. pp. 327–336. Lee I, Babu V, Caesar M, Nicol D. Deep reinforcement learning for UAV-assisted emergency response. In: MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. 2020. pp. 327–336.
103.
go back to reference Gumaei A, Al-Rakhami M, Hassan MM, Pace P, Alai G, Lin K, Fortino G. Deep learning and blockchain with edge computing for 5G-enabled drone identification and flight mode detection. IEEE Network. 2021;35(1):94–100. Gumaei A, Al-Rakhami M, Hassan MM, Pace P, Alai G, Lin K, Fortino G. Deep learning and blockchain with edge computing for 5G-enabled drone identification and flight mode detection. IEEE Network. 2021;35(1):94–100.
104.
go back to reference Zhai D, Wang C, Cao H, Garg S, Hassan MM, AlQahtani SA. Deep neural network based UAV deployment and dynamic power control for 6G-envisioned intelligent warehouse logistics system. Futur Gener Comput Syst. 2022;137:164–72. Zhai D, Wang C, Cao H, Garg S, Hassan MM, AlQahtani SA. Deep neural network based UAV deployment and dynamic power control for 6G-envisioned intelligent warehouse logistics system. Futur Gener Comput Syst. 2022;137:164–72.
105.
go back to reference Chen C, Chen S, Hu G, Chen B, Chen P, Su K. An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments. Aerosp Sci Technol. 2021;116:106891. Chen C, Chen S, Hu G, Chen B, Chen P, Su K. An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments. Aerosp Sci Technol. 2021;116:106891.
107.
go back to reference Kumar A. Real-time performance comparison of vision-based autonomous landing of quadcopter on a ground moving target. IETE J Res. 2023;68(9):5455–72. Kumar A. Real-time performance comparison of vision-based autonomous landing of quadcopter on a ground moving target. IETE J Res. 2023;68(9):5455–72.
109.
go back to reference Rodriguez-Ramos A, Sampedro C, Bavle H, De La Puente P, Campoy P. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. J Intell Robot Syst. 2019;93(1–2):351–66. Rodriguez-Ramos A, Sampedro C, Bavle H, De La Puente P, Campoy P. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. J Intell Robot Syst. 2019;93(1–2):351–66.
110.
go back to reference Polvara R, Patacchiola M, Sharma S, Wan J, Manning A, Sutton R, Cangelosi A. Toward end-to-end control for UAV autonomous landing via deep reinforcement learning. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2018. pp. 115–23. Polvara R, Patacchiola M, Sharma S, Wan J, Manning A, Sutton R, Cangelosi A. Toward end-to-end control for UAV autonomous landing via deep reinforcement learning. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2018. pp. 115–23.
111.
go back to reference Rodriguez-Ramos A, Sampedro C, Bavle H, Moreno IG, Campoy P. A deep reinforcement learning technique for vision-based autonomous multirotor landing on a moving platform. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 1010–7. Rodriguez-Ramos A, Sampedro C, Bavle H, Moreno IG, Campoy P. A deep reinforcement learning technique for vision-based autonomous multirotor landing on a moving platform. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 1010–7.
112.
go back to reference Jin Z, Wu J, Liu A, Zhang W-A, Yu L. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans Ind Electron. 2021;69(2):1898–908. Jin Z, Wu J, Liu A, Zhang W-A, Yu L. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans Ind Electron. 2021;69(2):1898–908.
113.
go back to reference Zhao J, Sun J, Cai Z, Wang L, Wang Y. End-to-end deep reinforcement learning for image-based UAV autonomous control. Appl Sci. 2021;11(18):8419. Zhao J, Sun J, Cai Z, Wang L, Wang Y. End-to-end deep reinforcement learning for image-based UAV autonomous control. Appl Sci. 2021;11(18):8419.
114.
go back to reference Patel N, Krishnamurthy P, Tzes A, Khorrami F. Overriding learning-based perception systems for control of autonomous unmanned aerial vehicles. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2021. pp. 258–64. Patel N, Krishnamurthy P, Tzes A, Khorrami F. Overriding learning-based perception systems for control of autonomous unmanned aerial vehicles. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2021. pp. 258–64.
115.
go back to reference Touil DE, Terki N, Hamiane M, Aouina A, Sidi Brahim K. Image-based visual servoing control of a quadcopter air vehicle. Int J Model Simul. 2021;42(2):203–16. Touil DE, Terki N, Hamiane M, Aouina A, Sidi Brahim K. Image-based visual servoing control of a quadcopter air vehicle. Int J Model Simul. 2021;42(2):203–16.
116.
go back to reference Sampedro C, Rodriguez-Ramos A, Gil I, Mejias L, Campoy P. Image-based visual servoing controller for multirotor aerial robots using deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 979–86. Sampedro C, Rodriguez-Ramos A, Gil I, Mejias L, Campoy P. Image-based visual servoing controller for multirotor aerial robots using deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 979–86.
117.
go back to reference Sampedro C, Rodriguez-Ramos A, Bavle H, Carrio A, de la Puente P, Campoy P. A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J Intell Robot Syst. 2019;95(2):601–27. Sampedro C, Rodriguez-Ramos A, Bavle H, Carrio A, de la Puente P, Campoy P. A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J Intell Robot Syst. 2019;95(2):601–27.
118.
go back to reference Carrio A, Sampedro C, Rodriguez-Ramos A, Campoy P. A review of deep learning methods and applications for unmanned aerial vehicles. J Sens. 2017;2017:1–13. Carrio A, Sampedro C, Rodriguez-Ramos A, Campoy P. A review of deep learning methods and applications for unmanned aerial vehicles. J Sens. 2017;2017:1–13.
119.
go back to reference Li J, Xie H, Low KH, Yong J, Li B. Image-based visual servoing of rotorcrafts to planar visual targets of arbitrary orientation. IEEE Robot Autom Lett. 2021;6(4):7861–8. Li J, Xie H, Low KH, Yong J, Li B. Image-based visual servoing of rotorcrafts to planar visual targets of arbitrary orientation. IEEE Robot Autom Lett. 2021;6(4):7861–8.
120.
go back to reference Zhang K, Shi Y, Sheng H. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE/ASME Trans Mechatron. 2021;26(2):700–8. Zhang K, Shi Y, Sheng H. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE/ASME Trans Mechatron. 2021;26(2):700–8.
121.
go back to reference Kang M, Chen H, Dong J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and q-leaning. Neurocomputing. 2020;402:384–94. Kang M, Chen H, Dong J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and q-leaning. Neurocomputing. 2020;402:384–94.
122.
go back to reference Shi H, Li X, Hwang K-S, Pan W, Xu G. Decoupled visual servoing with fuzzy q-learning. IEEE Trans Industr Inf. 2016;14(1):241–52. Shi H, Li X, Hwang K-S, Pan W, Xu G. Decoupled visual servoing with fuzzy q-learning. IEEE Trans Industr Inf. 2016;14(1):241–52.
123.
go back to reference Tang J, Lao S, Wan Y. Systematic review of collision-avoidance approaches for unmanned aerial vehicles. IEEE Syst J. 2021. Tang J, Lao S, Wan Y. Systematic review of collision-avoidance approaches for unmanned aerial vehicles. IEEE Syst J. 2021.
124.
go back to reference Durdevic P, Ortiz-Arroyo D. A deep neural network sensor for visual servoing in 3D spaces. Sensors. 2020;20(5):1437. Durdevic P, Ortiz-Arroyo D. A deep neural network sensor for visual servoing in 3D spaces. Sensors. 2020;20(5):1437.
125.
go back to reference Kim S, Park J, Yun J-K, Seo J. Motion planning by reinforcement learning for an unmanned aerial vehicle in virtual open space with static obstacles. Control. In: 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE; 2020. pp. 784–7. Kim S, Park J, Yun J-K, Seo J. Motion planning by reinforcement learning for an unmanned aerial vehicle in virtual open space with static obstacles. Control. In: 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE; 2020. pp. 784–7.
126.
go back to reference Akhloufi MA, Arola S, Bonnet A. Drones chasing drones: reinforcement learning and deep search area proposal. Drones. 2019;3(3):58. Akhloufi MA, Arola S, Bonnet A. Drones chasing drones: reinforcement learning and deep search area proposal. Drones. 2019;3(3):58.
128.
go back to reference Yuksel T. Sliding surface designs for visual servo control of quadrotors. Drones. 2023;7(8):531. Yuksel T. Sliding surface designs for visual servo control of quadrotors. Drones. 2023;7(8):531.
129.
go back to reference Aggarwal N, Jain V, Singh T, Vishwakarma DK, et al. DLVS: time series architecture for image-based visual servoing. In: 2023 8th International Conference on Control and Robotics Engineering (ICCRE). IEEE; 2023. pp. 101–7. Aggarwal N, Jain V, Singh T, Vishwakarma DK, et al. DLVS: time series architecture for image-based visual servoing. In: 2023 8th International Conference on Control and Robotics Engineering (ICCRE). IEEE; 2023. pp. 101–7.
130.
go back to reference Mosali NA, Shamsudin SS, Alfandi O, Omar R, Al-Fadhali N. Twin delayed deep deterministic policy gradient-based target tracking for unmanned aerial vehicle with achievement rewarding and multistage training. IEEE Access. 2022;10:23545–59. Mosali NA, Shamsudin SS, Alfandi O, Omar R, Al-Fadhali N. Twin delayed deep deterministic policy gradient-based target tracking for unmanned aerial vehicle with achievement rewarding and multistage training. IEEE Access. 2022;10:23545–59.
131.
go back to reference Collins J, Chand S, Vanderkop A, Howard D. A review of physics simulators for robotic applications. IEEE Access. 2021;9:51416–31. Collins J, Chand S, Vanderkop A, Howard D. A review of physics simulators for robotic applications. IEEE Access. 2021;9:51416–31.
132.
go back to reference Rafique MA, Lynch AF. Output-feedback image-based visual servoing for multirotor unmanned aerial vehicle line following. IEEE Trans Aerosp Electron Syst. 2020;56(4):3182–96. Rafique MA, Lynch AF. Output-feedback image-based visual servoing for multirotor unmanned aerial vehicle line following. IEEE Trans Aerosp Electron Syst. 2020;56(4):3182–96.
133.
go back to reference Hu C, Cao W, Ning B. Visual servoing with deep reinforcement learning for rotor unmanned helicopter. Int J Adv Rob Syst. 2022;19(2):17298806221084824. Hu C, Cao W, Ning B. Visual servoing with deep reinforcement learning for rotor unmanned helicopter. Int J Adv Rob Syst. 2022;19(2):17298806221084824.
134.
go back to reference Mitakidis A, Aspragkathos SN, Panetsos F, Karras GC, Kyriakopoulos KJ. A deep reinforcement learning visual servoing control strategy for target tracking using a multirotor UAV. Automation. In: 2023 9th International Conference on Automation, Robotics and Applications (ICARA). IEEE; 2023. pp. 219–24. Mitakidis A, Aspragkathos SN, Panetsos F, Karras GC, Kyriakopoulos KJ. A deep reinforcement learning visual servoing control strategy for target tracking using a multirotor UAV. Automation. In: 2023 9th International Conference on Automation, Robotics and Applications (ICARA). IEEE; 2023. pp. 219–24.
135.
go back to reference Wu J, Wang H, Li N, Yao P, Huang Y, Yang H. Path planning for solar-powered UAV in urban environment. Neurocomputing. 2018;275:2055–65. Publisher: Elsevier. Wu J, Wang H, Li N, Yao P, Huang Y, Yang H. Path planning for solar-powered UAV in urban environment. Neurocomputing. 2018;275:2055–65. Publisher: Elsevier.
136.
go back to reference Popović M, Vidal-Calleja T, Hitz G, Sa I, Siegwart R, Nieto J. Multiresolution mapping and informative path planning for UAV-based terrain monitoring. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2017. pp. 1382–8. Popović M, Vidal-Calleja T, Hitz G, Sa I, Siegwart R, Nieto J. Multiresolution mapping and informative path planning for UAV-based terrain monitoring. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2017. pp. 1382–8.
Metadata
Title
The Duo of Visual Servoing and Deep Learning-Based Methods for Situation-Aware Disaster Management: A Comprehensive Review
Authors
Senthil Kumar Jagatheesaperumal
Mohammad Mehedi Hassan
Md. Rafiul Hassan
Giancarlo Fortino
Publication date
01-05-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10290-4

Premium Partner