Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2022

29-11-2021 | Technical Article

The Effect of Equal Channel Angular Pressing on Friction Coefficients of Copper Samples in the Ring-Compression Test

Authors: Saman Khalilpourazary, Vali Alimirzaloo, Shahrad Karami Goodarzi, Gholamreza Hosseinpour

Published in: Journal of Materials Engineering and Performance | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, the effect of fine-grained microstructure on the friction coefficient compared to the coarse-grained one in the ring-compression test of copper samples is investigated. The equal channel angular pressing process was performed on annealed copper at room temperature and in the Bc route in three consecutive passes. Then, the ring-compression test was carried out on the ring-shaped samples at room temperature and in three conditions: dry, with Molybdenum disulfide, and graphite lubricants with deformation rates of 12.5, 25, 37.5, 50, and 62.5%. The calibration curves were provided using the finite element method and analysis of variance was employed to investigate the effect of parameters on friction coefficients. The results showed that the friction coefficients in ECAPed copper in the first and second passes while using graphite and Molybdenum disulfide lubricants are similar. ECAPed copper in the third pass and annealed copper, respectively have lower friction coefficients when being lubricated with graphite and Molybdenum disulfide lubricants compared to other copper samples. Additionally, in all copper samples, except for ECAPed copper in the third pass, the Molybdenum disulfide lubricant decreased the friction coefficient more compared to graphite lubricant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Fereshteh-Saniee, I. Pillinger and P. Hartley, Friction Modelling for the Physical Simulation of the Bulk Metal Forming Processes, J. Mater. Process. Technol., 2004, 153, p 151–156.CrossRef F. Fereshteh-Saniee, I. Pillinger and P. Hartley, Friction Modelling for the Physical Simulation of the Bulk Metal Forming Processes, J. Mater. Process. Technol., 2004, 153, p 151–156.CrossRef
2.
go back to reference M. Kunogi, On Plastic Deformation of Hollow Cylinders Under Axial Compressive Loading, J. Sci. Res. Inst., 1954, 50, p 215–246. M. Kunogi, On Plastic Deformation of Hollow Cylinders Under Axial Compressive Loading, J. Sci. Res. Inst., 1954, 50, p 215–246.
3.
go back to reference H. Kudo, Some Analytical and Experimental Studies of Axi-symmetric Cold Forging and Extrusion—I, Int. J. Mech. Sci., 1960, 2, p 102–127.CrossRef H. Kudo, Some Analytical and Experimental Studies of Axi-symmetric Cold Forging and Extrusion—I, Int. J. Mech. Sci., 1960, 2, p 102–127.CrossRef
4.
go back to reference A.T. Male and M.G. Cockcroft, A Method for the Determination of the Coefficient of Friction of Metals under Condition of Bulk Plastic Deformation, J. Inst. Met., 1964, 93, p 38–46. A.T. Male and M.G. Cockcroft, A Method for the Determination of the Coefficient of Friction of Metals under Condition of Bulk Plastic Deformation, J. Inst. Met., 1964, 93, p 38–46.
5.
go back to reference T. Altan, G. Ngaile and G. Shen, Cold and Hot Forging: Fundamentals and Applications, ASM International, New York, 2005.CrossRef T. Altan, G. Ngaile and G. Shen, Cold and Hot Forging: Fundamentals and Applications, ASM International, New York, 2005.CrossRef
6.
go back to reference H. Sofuoglu, H. Gedikli and J. Rasty, Determination of Friction Coefficient by Employing the Ring Compression Test, J. Eng. Mater. Technol., 2011, 123, p 338–348.CrossRef H. Sofuoglu, H. Gedikli and J. Rasty, Determination of Friction Coefficient by Employing the Ring Compression Test, J. Eng. Mater. Technol., 2011, 123, p 338–348.CrossRef
7.
go back to reference T. Robinson, H. Ou and C.G. Armstrong, Study on Ring Compression Test using Physical Modelling and FE Simulation, J. Mater. Process. Technol., 2004, 153, p 54–59.CrossRef T. Robinson, H. Ou and C.G. Armstrong, Study on Ring Compression Test using Physical Modelling and FE Simulation, J. Mater. Process. Technol., 2004, 153, p 54–59.CrossRef
8.
go back to reference D. Shahriari, A. Amiri and M.H. Sadeghi, Study on Hot Ring Compression Test of Nimonic 115 Superalloy Using Experimental Observations and 3D FEM Simulation, J. Mater. Eng. Perform, 2010, 19, p 633–642.CrossRef D. Shahriari, A. Amiri and M.H. Sadeghi, Study on Hot Ring Compression Test of Nimonic 115 Superalloy Using Experimental Observations and 3D FEM Simulation, J. Mater. Eng. Perform, 2010, 19, p 633–642.CrossRef
9.
go back to reference Y. Zhu, W. Zeng, X. Ma, Q. Tai, Z. Li and X. Li, Determination of the Friction Factor of Ti-6Al-4V Titanium Alloy in Hot Forging by Means of Ring-compression Test using FEM, Tribology Inter., 2011, 44, p 2074–2080.CrossRef Y. Zhu, W. Zeng, X. Ma, Q. Tai, Z. Li and X. Li, Determination of the Friction Factor of Ti-6Al-4V Titanium Alloy in Hot Forging by Means of Ring-compression Test using FEM, Tribology Inter., 2011, 44, p 2074–2080.CrossRef
10.
go back to reference A. Shokuhfar and O. Nejadseyfi, The Influence of Friction on the Processing of Ultrafine-grained/nanostructured Materials by Equal-channel Angular Pressing, J. Mater. Eng. Perform, 2014, 23, p 1038–1048.CrossRef A. Shokuhfar and O. Nejadseyfi, The Influence of Friction on the Processing of Ultrafine-grained/nanostructured Materials by Equal-channel Angular Pressing, J. Mater. Eng. Perform, 2014, 23, p 1038–1048.CrossRef
11.
go back to reference D.W. Wolla, M.J. Davidson and A.K. Khanra, Studies on the Formability of Powder Metallurgical Aluminum–copper Composite, Mater. Des., 2014, 59, p 151–159.CrossRef D.W. Wolla, M.J. Davidson and A.K. Khanra, Studies on the Formability of Powder Metallurgical Aluminum–copper Composite, Mater. Des., 2014, 59, p 151–159.CrossRef
12.
go back to reference F. Martín, M.J. Martín, L. Sevilla and M.A. Sebastián, The Ring Compression Test: Analysis of Dimensions and Canonical Geometry, Procedia. Eng., 2015, 132, p 326–333.CrossRef F. Martín, M.J. Martín, L. Sevilla and M.A. Sebastián, The Ring Compression Test: Analysis of Dimensions and Canonical Geometry, Procedia. Eng., 2015, 132, p 326–333.CrossRef
13.
go back to reference S. Hirawatari, H. Watari, S. Nishida, Y. Sato and M. Suzuki, Evaluation of Friction Properties of Magnesium Alloy during Hot Forging by Ring Compression, Test. Mater. Sci. Forum., 2017, 889, p 119–126.CrossRef S. Hirawatari, H. Watari, S. Nishida, Y. Sato and M. Suzuki, Evaluation of Friction Properties of Magnesium Alloy during Hot Forging by Ring Compression, Test. Mater. Sci. Forum., 2017, 889, p 119–126.CrossRef
14.
go back to reference A.M. Camacho, J. Valero, M.M. Marín and J. Claver, Incremental Versus Continuous Load-lubrication Procedure in the Determination of Friction Conditions by the Ring Compression Test, Manufact. Sys., 2017, 10, p 71–83. A.M. Camacho, J. Valero, M.M. Marín and J. Claver, Incremental Versus Continuous Load-lubrication Procedure in the Determination of Friction Conditions by the Ring Compression Test, Manufact. Sys., 2017, 10, p 71–83.
15.
go back to reference P. MashhadiKeshtiban, S. SheydaeiGovarchinGhaleh and V. Alimirzaloo, Performance Evaluation of Vegetable Base Oils Relative to Mineral Base Oils in the Lubrication of Cold Forming Processes of 2024 Aluminum Alloy, Part J. J. Eng. Tribology, 2019, 233, p 1068–1073.CrossRef P. MashhadiKeshtiban, S. SheydaeiGovarchinGhaleh and V. Alimirzaloo, Performance Evaluation of Vegetable Base Oils Relative to Mineral Base Oils in the Lubrication of Cold Forming Processes of 2024 Aluminum Alloy, Part J. J. Eng. Tribology, 2019, 233, p 1068–1073.CrossRef
16.
go back to reference V. Alimirzaloo, S. SheydayiGurchinQaleh, P. MashhadiKeshtiban and S. Ahmadi, Investigation of the Effect of CuO and AL2O3 Nanolubricants on the Surface Roughness in the Forging Process of Aluminum Alloy, Proc. Inst. Mech. Eng Part J: J. Eng. Tribology, 2017, 231, p 1595–1604.CrossRef V. Alimirzaloo, S. SheydayiGurchinQaleh, P. MashhadiKeshtiban and S. Ahmadi, Investigation of the Effect of CuO and AL2O3 Nanolubricants on the Surface Roughness in the Forging Process of Aluminum Alloy, Proc. Inst. Mech. Eng Part J: J. Eng. Tribology, 2017, 231, p 1595–1604.CrossRef
17.
go back to reference C.H. HariKrishna, M.J. Davidson, C.H. Nagaraju and B. Anil Kumar, Effect of Lubrication on Hardness in the Ring Compression Test, Proc. Inst. Mech. Eng Part C: J. Mech. Eng. Sci., 2016, 230, p 1939–1950.CrossRef C.H. HariKrishna, M.J. Davidson, C.H. Nagaraju and B. Anil Kumar, Effect of Lubrication on Hardness in the Ring Compression Test, Proc. Inst. Mech. Eng Part C: J. Mech. Eng. Sci., 2016, 230, p 1939–1950.CrossRef
18.
go back to reference G. Hosseinpour, M. Gerdooei, and V. Alimirzaloo, Influence of Die-machining Operation on the Frictional Condition in the Cold Forming Process, Tribology Trans., 2020, 1-10. G. Hosseinpour, M. Gerdooei, and V. Alimirzaloo, Influence of Die-machining Operation on the Frictional Condition in the Cold Forming Process, Tribology Trans., 2020, 1-10.
19.
go back to reference G. Faraji, K. HyoungSeop and H. TorabzadehKashi, Severe Plastic Deformation: Methods Processing and Properties, Elsevier, Berlin, 2018.CrossRef G. Faraji, K. HyoungSeop and H. TorabzadehKashi, Severe Plastic Deformation: Methods Processing and Properties, Elsevier, Berlin, 2018.CrossRef
20.
go back to reference H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang and A. Ma, A Two-step Dynamic Recrystallization Induced by LPSO Phases and its Impact on Mechanical Property of Severe Plastic Deformation Processed Mg97Y2Zn1 Alloy, J. Alloys Compd., 2017, 704, p 509–517.CrossRef H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang and A. Ma, A Two-step Dynamic Recrystallization Induced by LPSO Phases and its Impact on Mechanical Property of Severe Plastic Deformation Processed Mg97Y2Zn1 Alloy, J. Alloys Compd., 2017, 704, p 509–517.CrossRef
21.
go back to reference H. Liu, C. Sun, C. Wang, Y. Li, J. Bai, F. Xue, A. Ma and J. Jiang, Improving Toughness of a Mg2Ca-containing Mg-Al-Ca-Mn Alloy Via Refinement and Uniform Dispersion of Mg2Ca Particles, J. Mate. Sci. Technol., 2020, 59, p 61–71.CrossRef H. Liu, C. Sun, C. Wang, Y. Li, J. Bai, F. Xue, A. Ma and J. Jiang, Improving Toughness of a Mg2Ca-containing Mg-Al-Ca-Mn Alloy Via Refinement and Uniform Dispersion of Mg2Ca Particles, J. Mate. Sci. Technol., 2020, 59, p 61–71.CrossRef
22.
go back to reference Q. Xu, A. Ma, B. Saleh, R. Fathi, Y. Li, J. Jiang and C. Ni, Dry Sliding Wear Behavior of AZ91 Alloy Processed by Rotary-die Equal Channel Angular Pressing, J. Mater. Eng. Perform, 2020, 29, p 3961–3973.CrossRef Q. Xu, A. Ma, B. Saleh, R. Fathi, Y. Li, J. Jiang and C. Ni, Dry Sliding Wear Behavior of AZ91 Alloy Processed by Rotary-die Equal Channel Angular Pressing, J. Mater. Eng. Perform, 2020, 29, p 3961–3973.CrossRef
23.
go back to reference O. Irfan, S. Mukras, F. Al-Mufadi and F. Djavanroodi, Surface Modeling of Nanostructured Copper Subjected to Erosion-Corrosion, Metals, 2017, 7, p 155.CrossRef O. Irfan, S. Mukras, F. Al-Mufadi and F. Djavanroodi, Surface Modeling of Nanostructured Copper Subjected to Erosion-Corrosion, Metals, 2017, 7, p 155.CrossRef
24.
go back to reference Z.N. Farhat, Y. Ding, D.O. Northwood and A.T. Alpas, Effect of Grain Size on Friction and Wear of Nanocrystalline Aluminum, Mater. Sci. Eng A., 1996, 206, p 302–313.CrossRef Z.N. Farhat, Y. Ding, D.O. Northwood and A.T. Alpas, Effect of Grain Size on Friction and Wear of Nanocrystalline Aluminum, Mater. Sci. Eng A., 1996, 206, p 302–313.CrossRef
25.
go back to reference A. Li and I. Szlufarska, How Grain Size Controls Friction and Wear in Nanocrystalline Metals, Phy. Rev. B, 2015, 92, p 075418.CrossRef A. Li and I. Szlufarska, How Grain Size Controls Friction and Wear in Nanocrystalline Metals, Phy. Rev. B, 2015, 92, p 075418.CrossRef
26.
go back to reference J.T. Black and R.A. Kohser, DeGarmo’s Materials and Processes in Manufacturing, John Wiley & Sons, London, 2020. J.T. Black and R.A. Kohser, DeGarmo’s Materials and Processes in Manufacturing, John Wiley & Sons, London, 2020.
27.
go back to reference S.H. Hoseini, S. Khalilpourazary and M. Zadshakoyan, Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study, J. Mater. Eng. Perform, 2020, 29, p 975–986.CrossRef S.H. Hoseini, S. Khalilpourazary and M. Zadshakoyan, Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study, J. Mater. Eng. Perform, 2020, 29, p 975–986.CrossRef
28.
go back to reference D.C. Montgomery, Design and Analysis of Experiments, Wiley, London, 2001. D.C. Montgomery, Design and Analysis of Experiments, Wiley, London, 2001.
29.
go back to reference S. Khalilpourazary, M. Zadshakoyan and S.H. Hoseini, Ductile Fracture Analysis of Annealed and ECAPed Pure Copper, Theor. Appl. Fract. Mech, 2019, 103, p 102277.CrossRef S. Khalilpourazary, M. Zadshakoyan and S.H. Hoseini, Ductile Fracture Analysis of Annealed and ECAPed Pure Copper, Theor. Appl. Fract. Mech, 2019, 103, p 102277.CrossRef
30.
go back to reference M.H. Cho, J. Ju, S.J. Kim and H. Jang, Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials, Wear, 2006, 260, p 855–860.CrossRef M.H. Cho, J. Ju, S.J. Kim and H. Jang, Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials, Wear, 2006, 260, p 855–860.CrossRef
Metadata
Title
The Effect of Equal Channel Angular Pressing on Friction Coefficients of Copper Samples in the Ring-Compression Test
Authors
Saman Khalilpourazary
Vali Alimirzaloo
Shahrad Karami Goodarzi
Gholamreza Hosseinpour
Publication date
29-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06465-x

Other articles of this Issue 5/2022

Journal of Materials Engineering and Performance 5/2022 Go to the issue

Premium Partners