Skip to main content
Top
Published in: Journal of Polymer Research 2/2013

01-02-2013 | Original Paper

The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers

Authors: O. Saligheh, M. Forouharshad, R. Arasteh, R. Eslami-Farsani, R. Khajavi, B. Yadollah Roudbari

Published in: Journal of Polymer Research | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composite nanofibers of Poly(butylene terephthalate) (PBT)/multiwalled-carbon nanotubes (MWCNTs) were prepared by electrospinning technique in the form of a random fibers web. The effect of MWCNTs on the morphology, crystallinity, and mechanical properties of the electrospun composite nanofibers was investigated by SEM, DSC, and tensile testing, respectively. SEM observations indicated that the presence of MWCNTs resulted in finer nanofibers for lower loading; however, a broader diameter was found for nanofibers with higher amounts of carbon nanotubes.It was also observed that the melt-crystallization temperature (Tc) of PBT nanofibers shifted to a higher temperature (about 8 °C) by the incorporation of MWCNTs which might be due to the nucleating effect of the nanotubes. The mechanical properties (specific strength and modulus) of the PBT nanofibers were significantly enhanced by the incorporation of MWCNTs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyxmori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214CrossRef Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyxmori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214CrossRef
2.
3.
go back to reference Tucknott R, Yaliraki SN (2002) Aggregation properties of carbon nanotubes at interfaces. Chem Phys 281:455–463CrossRef Tucknott R, Yaliraki SN (2002) Aggregation properties of carbon nanotubes at interfaces. Chem Phys 281:455–463CrossRef
4.
go back to reference Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114–143117CrossRef Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114–143117CrossRef
5.
go back to reference Shin YM, Hohman MM, Brenner MP, RutledgeG C (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78(8):1149–1151CrossRef Shin YM, Hohman MM, Brenner MP, RutledgeG C (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78(8):1149–1151CrossRef
6.
go back to reference Ko F, Gogotsi Y, AliA NN, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165CrossRef Ko F, Gogotsi Y, AliA NN, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165CrossRef
7.
go back to reference Dror Y, SalalhaW KRL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embeddedin oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020CrossRef Dror Y, SalalhaW KRL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embeddedin oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020CrossRef
8.
go back to reference GaoJ YA, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scalefabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbonnanotube assembly. J Am Chem Soc 126(51):16698–16699CrossRef GaoJ YA, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scalefabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbonnanotube assembly. J Am Chem Soc 126(51):16698–16699CrossRef
9.
go back to reference Salalha W, Dror Y, KhalfinR L, Cohen Y, Yarin AL, Zussman E (2004) Single-walled carbonnanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20(22):9852–9855CrossRef Salalha W, Dror Y, KhalfinR L, Cohen Y, Yarin AL, Zussman E (2004) Single-walled carbonnanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20(22):9852–9855CrossRef
10.
go back to reference Buchko CJ, Chen LC, Shen Y, MartinD C (1999) Processing and microstructureal characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407CrossRef Buchko CJ, Chen LC, Shen Y, MartinD C (1999) Processing and microstructureal characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407CrossRef
11.
go back to reference MacDiarmid AG, Jones J, We NID, Llaguno H, Okuzaki M (2001) Electrostatically generated nanofibers of electronic polymers. Synth Met 119:27–30CrossRef MacDiarmid AG, Jones J, We NID, Llaguno H, Okuzaki M (2001) Electrostatically generated nanofibers of electronic polymers. Synth Met 119:27–30CrossRef
12.
go back to reference Ma Z, Kotakia M, YongaT HW, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536CrossRef Ma Z, Kotakia M, YongaT HW, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536CrossRef
13.
go back to reference Kosmider K, Scott J (2002) Polymeric nanofibers exhibit an enhanced air filtration performance. Filtr Sep 39:20–22CrossRef Kosmider K, Scott J (2002) Polymeric nanofibers exhibit an enhanced air filtration performance. Filtr Sep 39:20–22CrossRef
14.
go back to reference Luis J, Valle D, Camps R, Díaz A, Franco L, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res 18:1903–1917CrossRef Luis J, Valle D, Camps R, Díaz A, Franco L, Rodríguez-Galán A, Puiggalí J (2011) Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res 18:1903–1917CrossRef
15.
go back to reference Fang J, Niu HT, Lin T, Wang X (2008) Apllications ofelectrospunnanofibers. Chin Sci Bull 53:2265–2286CrossRef Fang J, Niu HT, Lin T, Wang X (2008) Apllications ofelectrospunnanofibers. Chin Sci Bull 53:2265–2286CrossRef
16.
go back to reference Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospunnanofibers. Colloid Surf A Phys-Chem Eng A Sp 187–188:469–481CrossRef Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospunnanofibers. Colloid Surf A Phys-Chem Eng A Sp 187–188:469–481CrossRef
17.
go back to reference Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospunnanofibers of carbon nanotube/polycaprolactonenanocomposite. Polymer 47:8019–8025CrossRef Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospunnanofibers of carbon nanotube/polycaprolactonenanocomposite. Polymer 47:8019–8025CrossRef
18.
go back to reference Saeed K, Park SY, HaiderS BJB (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospunnanofibers. Nanoscale Res Lertt 4:39–46CrossRef Saeed K, Park SY, HaiderS BJB (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospunnanofibers. Nanoscale Res Lertt 4:39–46CrossRef
19.
go back to reference Zhou WP, Wu YL, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers. Polymer 46:12689–12695CrossRef Zhou WP, Wu YL, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers. Polymer 46:12689–12695CrossRef
20.
go back to reference Kim GM, Michler GH, Poetschke P (2005) Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46:7346–7351CrossRef Kim GM, Michler GH, Poetschke P (2005) Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46:7346–7351CrossRef
21.
go back to reference Saeed KH, Young PS (2010) Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrilenanofibers. J Polym Res 17:535–540CrossRef Saeed KH, Young PS (2010) Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrilenanofibers. J Polym Res 17:535–540CrossRef
22.
go back to reference Hou HQ, Ge JJ, Zeng J, Reneker Li Q, Griener A, Cheng SZD (2005) Electrospunpolyacrylonitrilenanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973CrossRef Hou HQ, Ge JJ, Zeng J, Reneker Li Q, Griener A, Cheng SZD (2005) Electrospunpolyacrylonitrilenanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973CrossRef
23.
go back to reference Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 28:872–880CrossRef Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 28:872–880CrossRef
24.
go back to reference Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospunmultiwalled nanotube/poly(methylmethacrylate) nanofibers. Adv Mater 19:1228–1233CrossRef Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospunmultiwalled nanotube/poly(methylmethacrylate) nanofibers. Adv Mater 19:1228–1233CrossRef
25.
go back to reference SalighehO AR, ForouharshadM FRE (2011) Poly(Butylene Terephthalate)/single wall carbon nanotubes composite nanofibers by electrospinning. J Macromol Sci Part B: Phys 50(6):1031–1041CrossRef SalighehO AR, ForouharshadM FRE (2011) Poly(Butylene Terephthalate)/single wall carbon nanotubes composite nanofibers by electrospinning. J Macromol Sci Part B: Phys 50(6):1031–1041CrossRef
26.
go back to reference ForouharshadM SO, ArastehR FRE (2010) Manufacture and characterization of poly (butylenes terephthalate) nanofibers by electrospinning. J Macromol Sci Part B: Phys 49(4):833–842CrossRef ForouharshadM SO, ArastehR FRE (2010) Manufacture and characterization of poly (butylenes terephthalate) nanofibers by electrospinning. J Macromol Sci Part B: Phys 49(4):833–842CrossRef
27.
go back to reference Ra EJ, An KH, KimK K, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413(1–3):188–193CrossRef Ra EJ, An KH, KimK K, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413(1–3):188–193CrossRef
28.
go back to reference Naebe M, Lin T, TianW DL, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospunnanofibres. Nanotechnology 18:225605CrossRef Naebe M, Lin T, TianW DL, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospunnanofibres. Nanotechnology 18:225605CrossRef
29.
go back to reference Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 50:872–880CrossRef Chen H, Liu Z, Cebe P (2009) Chain confinement in electrospunnanofibers of PET with carbon nanotubes. Polymer 50:872–880CrossRef
30.
go back to reference Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223CrossRef Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223CrossRef
31.
go back to reference Kim JS, Reneker DH (1999) Polybenzimidazolenanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854CrossRef Kim JS, Reneker DH (1999) Polybenzimidazolenanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854CrossRef
32.
go back to reference Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electro Stat 35(2–3):151–160CrossRef Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electro Stat 35(2–3):151–160CrossRef
33.
go back to reference Kaganj AB, Rashidi AL, Arasteh R (2009) Crystallisationbehaviour and morphological characteristics of poly(propylene)/multi-walled carbon nanotube nanocomposites. J Exp Nanosci 4(1):21–34CrossRef Kaganj AB, Rashidi AL, Arasteh R (2009) Crystallisationbehaviour and morphological characteristics of poly(propylene)/multi-walled carbon nanotube nanocomposites. J Exp Nanosci 4(1):21–34CrossRef
34.
go back to reference Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate). Coll Polym Sci 258(2):117–124CrossRef Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate). Coll Polym Sci 258(2):117–124CrossRef
35.
go back to reference Goa J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon R (2005) Continuous spinning of singlewalled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854CrossRef Goa J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon R (2005) Continuous spinning of singlewalled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854CrossRef
36.
go back to reference McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (207) Morphological, electrical, and mechanical characterization of electrospunnanofiber mats containing multiwalled carbon nanotubes Macromolecules 40:997–1003. McCullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (207) Morphological, electrical, and mechanical characterization of electrospunnanofiber mats containing multiwalled carbon nanotubes Macromolecules 40:997–1003.
37.
go back to reference Jeon HJ, Kim JS, Kim TG, Hyun J, Ryeol YW, Ho JY (2008) Preparation of poly(ε-caprolactone)-based-polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci 254:5886–5890CrossRef Jeon HJ, Kim JS, Kim TG, Hyun J, Ryeol YW, Ho JY (2008) Preparation of poly(ε-caprolactone)-based-polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci 254:5886–5890CrossRef
Metadata
Title
The effect of multi-walled carbon nanotubes on morphology, crystallinity and mechanical properties of PBT/MWCNT composite nanofibers
Authors
O. Saligheh
M. Forouharshad
R. Arasteh
R. Eslami-Farsani
R. Khajavi
B. Yadollah Roudbari
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2013
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-012-0065-5

Other articles of this Issue 2/2013

Journal of Polymer Research 2/2013 Go to the issue

Premium Partners