Skip to main content
Top

2020 | OriginalPaper | Chapter

The Effect of Plastic Deformation on the Precipitation Hardening Behavior of Biodegradable Mg–Sr–Ca–Zn Based Alloys

Authors : Matteo Nicolosi, Baoqi Guo, Mihriban Pekguleryuz, Mert Celikin

Published in: Magnesium Technology 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the precipitation hardening behaviour of Mg–Sr–Ca–Zn based alloy system with trace additions was investigated. The as-cast microstructure was found to be composed of Mg2(Ca, Sr) interdendritic phases surrounding the α-Mg matrix. The effect of temperature as well as initial plastic deformation on the precipitation hardening behaviour was analyzed via ageing treatments. More effective age-hardening response was achieved via ageing at 150 °C both in as-cast and deformed samples. Prior plastic deformation resulted in changes in precipitation kinetics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” vol. 27, pp. 1728–1734, 2006. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” vol. 27, pp. 1728–1734, 2006.
2.
go back to reference A. Pietak, P. Mahoney, G. J. Dias, and M. P. Staiger, “Bone-like matrix formation on magnesium and magnesium alloys,” pp. 407–415, 2008. A. Pietak, P. Mahoney, G. J. Dias, and M. P. Staiger, “Bone-like matrix formation on magnesium and magnesium alloys,” pp. 407–415, 2008.
3.
go back to reference D. A. Puleo and W. W. Huh, “Acute Toxicity of Metal Ions in Cultures of Osteogenic Cells Derived from Bone Marrow Stromal Cells,” pp. 109–116, 1995. D. A. Puleo and W. W. Huh, “Acute Toxicity of Metal Ions in Cultures of Osteogenic Cells Derived from Bone Marrow Stromal Cells,” pp. 109–116, 1995.
4.
go back to reference B. Y. J. J. Jacobs, M. D, J. L. Gilbert, D. Ph, and R. M. Urbant, “Current Concepts Review Corrosion of Metal Orthopaedic Implants,” pp. 268–282, 1998. B. Y. J. J. Jacobs, M. D, J. L. Gilbert, D. Ph, and R. M. Urbant, “Current Concepts Review Corrosion of Metal Orthopaedic Implants,” pp. 268–282, 1998.
5.
go back to reference W. Jiang et al., “In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells,” Acta Biomater., vol. 72, pp. 407–423, 2018. W. Jiang et al., “In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells,” Acta Biomater., vol. 72, pp. 407–423, 2018.
6.
go back to reference H. B. Henderson, V. Ramaswamy, A. E. Wilson-heid, M. S. Kesler, J. B. Allen, and M. V Manuel, “Mechanical and degradation property improvement in a biocompatible Mg- Ca-Sr alloy by thermomechanical processing,” J. Mech. Behav. Biomed. Mater., vol. 80, no. July 2017, pp. 285–292, 2018. H. B. Henderson, V. Ramaswamy, A. E. Wilson-heid, M. S. Kesler, J. B. Allen, and M. V Manuel, “Mechanical and degradation property improvement in a biocompatible Mg- Ca-Sr alloy by thermomechanical processing,” J. Mech. Behav. Biomed. Mater., vol. 80, no. July 2017, pp. 285–292, 2018.
7.
go back to reference Y. Zhang, J. Li, and J. Li, “Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid,” J. Mech. Behav. Biomed. Mater., vol. 80, no. July 2017, pp. 246–257, 2018. Y. Zhang, J. Li, and J. Li, “Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid,” J. Mech. Behav. Biomed. Mater., vol. 80, no. July 2017, pp. 246–257, 2018.
8.
go back to reference D. Hyun, B. Woo, J. Young, K. Mox, and I. Min, “Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys,” J. Alloys Compd., vol. 695, pp. 1166–1174, 2017. D. Hyun, B. Woo, J. Young, K. Mox, and I. Min, “Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys,” J. Alloys Compd., vol. 695, pp. 1166–1174, 2017.
9.
go back to reference Z. Li, X. Gu, S. Lou, and Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, vol. 29, no. 10, pp. 1329–1344, 2008. Z. Li, X. Gu, S. Lou, and Y. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, vol. 29, no. 10, pp. 1329–1344, 2008.
10.
go back to reference N. Li and Y. Zheng, “Novel Magnesium Alloys Developed for Biomedical Application: A Review,” J. Mater. Sci. Technol., vol. 29, no. 6, pp. 489–502, 2013. N. Li and Y. Zheng, “Novel Magnesium Alloys Developed for Biomedical Application: A Review,” J. Mater. Sci. Technol., vol. 29, no. 6, pp. 489–502, 2013.
11.
go back to reference J. C. Oh, T. Ohkubo, T. Mukai, and K. Hono, “TEM and 3DAP characterization of an age-hardened Mg – Ca – Zn alloy,” vol. 53, pp. 675–679, 2005. J. C. Oh, T. Ohkubo, T. Mukai, and K. Hono, “TEM and 3DAP characterization of an age-hardened Mg – Ca – Zn alloy,” vol. 53, pp. 675–679, 2005.
12.
go back to reference R. V. Suganthi, K. Elayaraja, M. I. A. Joshy, V. S. Chandra, E. K. Girija, and S. N. Kalkura, “Fibrous growth of strontium substituted hydroxyapatite and its drug release,” Mater. Sci. Eng. C, vol. 31, no. 3, pp. 593–599, 2011. R. V. Suganthi, K. Elayaraja, M. I. A. Joshy, V. S. Chandra, E. K. Girija, and S. N. Kalkura, “Fibrous growth of strontium substituted hydroxyapatite and its drug release,” Mater. Sci. Eng. C, vol. 31, no. 3, pp. 593–599, 2011.
13.
go back to reference W. Zhang et al., “Effects of strontium in modified biomaterials,” Acta Biomater., vol. 7, no. 2, pp. 800–808, 2011. W. Zhang et al., “Effects of strontium in modified biomaterials,” Acta Biomater., vol. 7, no. 2, pp. 800–808, 2011.
14.
go back to reference S. G. Dahl et al., “Incorporation and distribution of strontium in bone,” Bone, vol. 28, no. 4, pp. 446–453, 2001. S. G. Dahl et al., “Incorporation and distribution of strontium in bone,” Bone, vol. 28, no. 4, pp. 446–453, 2001.
15.
go back to reference X. Zeng, Y. Wang, W. Ding, A. A. Luo, and A. K. Sachdev, “Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 4, pp. 1333–1341, 2006. X. Zeng, Y. Wang, W. Ding, A. A. Luo, and A. K. Sachdev, “Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 4, pp. 1333–1341, 2006.
16.
go back to reference H. Brar, J. Wang, and M. V Manuel, “Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behav. Biomed. Mater., pp. 87–95, 2012. H. Brar, J. Wang, and M. V Manuel, “Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behav. Biomed. Mater., pp. 87–95, 2012.
17.
go back to reference M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, “Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance,” Mater. Sci. Eng. C, vol. 35, no. 1, pp. 267–282, 2014. M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, “Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance,” Mater. Sci. Eng. C, vol. 35, no. 1, pp. 267–282, 2014.
18.
go back to reference P. Villars, Pearson’s Handbook, Desk Edition: Crystallographic Data for Intermetallic Phases, vol. 1. ASM international Materials Park, OH, 1997. P. Villars, Pearson’s Handbook, Desk Edition: Crystallographic Data for Intermetallic Phases, vol. 1. ASM international Materials Park, OH, 1997.
19.
go back to reference Y. Zhong, “Investigation in Mg-Al-Ca-Sr-Zn System by Computational Thermodynamics Approach Coupled with First-Principles Energetics and Experiments,” no. December, 2005. Y. Zhong, “Investigation in Mg-Al-Ca-Sr-Zn System by Computational Thermodynamics Approach Coupled with First-Principles Energetics and Experiments,” no. December, 2005.
Metadata
Title
The Effect of Plastic Deformation on the Precipitation Hardening Behavior of Biodegradable Mg–Sr–Ca–Zn Based Alloys
Authors
Matteo Nicolosi
Baoqi Guo
Mihriban Pekguleryuz
Mert Celikin
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36647-6_50

Premium Partners