Skip to main content
Top
Published in:

01-10-2022 | STRENGTH AND PLASTICITY

The Effect of Prolonged Annealing on the Structural Stability of Nanoparticle-Hardened Low-Carbon 9% Cr–3% Co Steel

Authors: A. E. Fedoseeva, S. I. Degtyareva

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Abstract—The effect of long-term annealing on the structure of low-carbon 9% Cr–3% Co steel hardened with nanoparticles has been studied. Annealing was performed for 100, 500, 1000, and 3000 hours at a temperature of 650°C. After heat treatment, the width of martensitic laths in the steel structure was about 300 nm and the dislocation number density inside the laths was high. The lath structure of tempered martensite was stabilized by (Ta,Cr)X carbonitrides with an average size of 11 nm. The Vickers microhardness decreased by 16% after 3000-h annealing compared to that of the initial state. The decrease in microhardness was accompanied by structural changes in the steel upon annealing, such as a decrease in the dislocation density, a decrease in the content of tungsten and copper in the solid solution, and the enlargement of carbonitrides (Ta,Cr)X and martensitic laths. In general, the structural stability of the investigated steel during long-term annealing is quite high compared to that of other high-chromium martensitic steels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Kaibyshev, V. Skorobogatykh, and I. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef R. Kaibyshev, V. Skorobogatykh, and I. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).CrossRef
2.
go back to reference V. Skorobogatykh and I. Shchenkova, “Development and mastering of materials for thermal blocks for super-supercritical parameters,” Energonadzor i Energobezopasnost’ 1, 56–59 (2008). V. Skorobogatykh and I. Shchenkova, “Development and mastering of materials for thermal blocks for super-supercritical parameters,” Energonadzor i Energobezopasnost’ 1, 56–59 (2008).
3.
go back to reference F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008).CrossRef F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008).CrossRef
4.
go back to reference A. E. Fedoseeva, I. S. Nikitin, and R. O. Kaibyshev, “Effect of the quenching temperature on the creep resistance of 9% Cr–1% W–1% Mo–V–Nb martensite steel,” Phys. Met. Metallogr. 123 (1), 92–98 (2022).CrossRef A. E. Fedoseeva, I. S. Nikitin, and R. O. Kaibyshev, “Effect of the quenching temperature on the creep resistance of 9% Cr–1% W–1% Mo–V–Nb martensite steel,” Phys. Met. Metallogr. 123 (1), 92–98 (2022).CrossRef
5.
go back to reference H. K. Danielsen, “Review of Z phase precipitation in 9–12 wt % Cr steels,” Mater. Sci. Technol. 32, 126–137 (2016).CrossRef H. K. Danielsen, “Review of Z phase precipitation in 9–12 wt % Cr steels,” Mater. Sci. Technol. 32, 126–137 (2016).CrossRef
6.
go back to reference A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020).CrossRef A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020).CrossRef
7.
go back to reference A. Fedoseeva, A. Dolzhenko, and A. Fedoseev, “Effect of thermo-mechanical treatment on short-term mechanical properties of low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020072 (2022).CrossRef A. Fedoseeva, A. Dolzhenko, and A. Fedoseev, “Effect of thermo-mechanical treatment on short-term mechanical properties of low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020072 (2022).CrossRef
8.
go back to reference A. Fedoseeva and A. Fedoseev, “Modeling of thermo-mechanical treatment for formation of stable particles in a low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020071 (2022).CrossRef A. Fedoseeva and A. Fedoseev, “Modeling of thermo-mechanical treatment for formation of stable particles in a low-carbon 9% Cr martensitic steel,” AIP Conf. Proc. 2509, 020071 (2022).CrossRef
9.
go back to reference H. Wang, W. Yan, S. Zwaag, Q. Shi, W. Wang, K. Yang, and Y. Shan, “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater. 134, 143–154 (2017).CrossRef H. Wang, W. Yan, S. Zwaag, Q. Shi, W. Wang, K. Yang, and Y. Shan, “On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates,” Acta Mater. 134, 143–154 (2017).CrossRef
10.
go back to reference A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016).CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016).CrossRef
11.
go back to reference F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).
12.
go back to reference I. Fedorova, Zh. Yanushkevich, A. Belyakov, and R. Kaibyshev, “Microstructure and deformation behavior of a hot forged 9% Cr creep resistant steel,” Adv. Mater. Res. 409, 672–677 (2012).CrossRef I. Fedorova, Zh. Yanushkevich, A. Belyakov, and R. Kaibyshev, “Microstructure and deformation behavior of a hot forged 9% Cr creep resistant steel,” Adv. Mater. Res. 409, 672–677 (2012).CrossRef
13.
go back to reference V. A. Dudko, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C,” Met. Sci. Heat Treat. 52, 111–117 (2010).CrossRef V. A. Dudko, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C,” Met. Sci. Heat Treat. 52, 111–117 (2010).CrossRef
14.
go back to reference A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in steel 10Kh9K3V1M1FBR due to creep,” Met. Sci. Heat Treat. 52, 118–127 (2010).CrossRef A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, I. A. Shchenkova, and R. O. Kaibyshev, “Structural changes in steel 10Kh9K3V1M1FBR due to creep,” Met. Sci. Heat Treat. 52, 118–127 (2010).CrossRef
15.
go back to reference A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel,” J. Mater. Sci. 52, 2974–2988 (2017).CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep behavior and microstructure of a 9Cr–3Co–3W martensitic steel,” J. Mater. Sci. 52, 2974–2988 (2017).CrossRef
16.
go back to reference E. Tkachev, A. Belyakov, and R. Kaibyshev, “Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents,” Mater. Sci. Eng., A 772, 138821 (2020).CrossRef E. Tkachev, A. Belyakov, and R. Kaibyshev, “Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents,” Mater. Sci. Eng., A 772, 138821 (2020).CrossRef
17.
go back to reference N. Dudova, R. Mishnev, and R. Kaibyshev, “Creep behavior of a 10% Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650°C,” Mater. Sci. Eng., A 766, 138353 (2019).CrossRef N. Dudova, R. Mishnev, and R. Kaibyshev, “Creep behavior of a 10% Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650°C,” Mater. Sci. Eng., A 766, 138353 (2019).CrossRef
18.
go back to reference P. Yan, Zh. Liu, H. Bao, Y. Weng, and W. Liu, “Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions,” Mater. Sci. Eng., A 588, 22–28 (2013).CrossRef P. Yan, Zh. Liu, H. Bao, Y. Weng, and W. Liu, “Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions,” Mater. Sci. Eng., A 588, 22–28 (2013).CrossRef
19.
go back to reference N. S. Nikolaeva, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Effect of thermal aging for up to 22 thousand hours on the structural and phase state of ferritic–martensitic steels EK181 and ChS139,” Phys. Met. Metallogr. 123, 489–499 (2022).CrossRef N. S. Nikolaeva, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Effect of thermal aging for up to 22 thousand hours on the structural and phase state of ferritic–martensitic steels EK181 and ChS139,” Phys. Met. Metallogr. 123, 489–499 (2022).CrossRef
Metadata
Title
The Effect of Prolonged Annealing on the Structural Stability of Nanoparticle-Hardened Low-Carbon 9% Cr–3% Co Steel
Authors
A. E. Fedoseeva
S. I. Degtyareva
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600889

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys