Skip to main content
Top
Published in:

01-10-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy

Authors: N. N. Kuranova, V. V. Makarov, V. G. Pushin

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of thermomechanical treatment on the structure and phase transformations of the Ti–50.5 at % Ni shape-memory alloy was studied. The data on the specific features of mechanical properties and character of fracture in the initial ultrafine-grained (UFG) alloy were gained by tension tests in combination with optical and electron microscopy and X-ray diffraction analysis. The UFG alloy structure was created by multipass plastic rolling deformation. The alloy was established to have high levels of its mechanical properties (ultimate strength of up to 1400 MPa at a relative elongation of more than 25%) due to the revealed effect of a complex reaction: recrystallization with the formation of a UFG structure and associated highly dispersed heterogeneous decomposition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975). Shape Memory Effects in Alloys, Ed. by J. Perkins (Plenum, London, 1975).
2.
go back to reference K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian]. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].
3.
go back to reference Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990). Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990).
4.
go back to reference V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian]. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].
5.
go back to reference V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-Transitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian]. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-Transitional Phenomena and Martensitic Transformations (UrBr RAS, Yekaterinburg, 1998) [in Russian].
6.
go back to reference E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).CrossRef E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008).CrossRef
7.
go back to reference J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).CrossRef J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012).CrossRef
8.
go back to reference J. Cui, “Shape memory alloys and their applications in power generation and refrigeration,” In Mesoscopic Phenomena in Multifunctional Materials, Ed. by A. Saxena and A. Planes (Springer, Berlin, 2014), pp. 289–307. J. Cui, “Shape memory alloys and their applications in power generation and refrigeration,” In Mesoscopic Phenomena in Multifunctional Materials, Ed. by A. Saxena and A. Planes (Springer, Berlin, 2014), pp. 289–307.
9.
go back to reference S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide–based alloys in medicine,” Phys. Met. Metallogr. 97, 56–96 (2004). S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, “Application of titanium nickelide–based alloys in medicine,” Phys. Met. Metallogr. 97, 56–96 (2004).
10.
go back to reference J. Wilson and M. Weselowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthquake Spectra 21, 569–601 (2005).CrossRef J. Wilson and M. Weselowsky, “Shape memory alloys for seismic response modification: A state-of-the-art review,” Earthquake Spectra 21, 569–601 (2005).CrossRef
11.
go back to reference T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Wordhead, Cambridge, 2009).CrossRef T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Wordhead, Cambridge, 2009).CrossRef
12.
go back to reference J. Dong, C. Cai, and A. O’Keil, “Overview of potential and existing applications of shape memory alloys in bridges,” J. Bridge Eng. 16, 305–315 (2011).CrossRef J. Dong, C. Cai, and A. O’Keil, “Overview of potential and existing applications of shape memory alloys in bridges,” J. Bridge Eng. 16, 305–315 (2011).CrossRef
13.
go back to reference V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90 (Suppl. 1), S68–S95 (2000). V. G. Pushin, “Alloys with a thermomechanical memory: Structure, properties, and application,” Phys. Met. Metallogr. 90 (Suppl. 1), S68–S95 (2000).
14.
go back to reference V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mat. 27, 77–88 (2002).CrossRef V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation,” Ann. Chim. Sci. Mat. 27, 77–88 (2002).CrossRef
15.
go back to reference R. Z. Valiev and V. G. Pushin, “Bulk Nanostructured metallic materials: Production, structure, properties and functioning,” Phys. Met. Metallogr. 94, S1–S4 (2002). R. Z. Valiev and V. G. Pushin, “Bulk Nanostructured metallic materials: Production, structure, properties and functioning,” Phys. Met. Metallogr. 94, S1–S4 (2002).
16.
go back to reference V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Development of methods of severe plastic deformation for the production of high-strength alloys based on titanium nickelide with a shape memory effect,” Phys. Met. Metallogr. 94, S54–S68 (2002). V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, “Development of methods of severe plastic deformation for the production of high-strength alloys based on titanium nickelide with a shape memory effect,” Phys. Met. Metallogr. 94, S54–S68 (2002).
17.
go back to reference V. G. Pushin and R. Z. Valiev, “The nanostructured TiNi shape-memory alloys: New properties and applications,” Solid State Phenom. 94, 13–24 (2003).CrossRef V. G. Pushin and R. Z. Valiev, “The nanostructured TiNi shape-memory alloys: New properties and applications,” Solid State Phenom. 94, 13–24 (2003).CrossRef
18.
go back to reference V. G. Pushin, R. Z. Valiev, and L. I. Yurchenko, “Processing of nanostructured TiNi-shape memory alloys: Methods, structures, properties, application,” J. Phys. IV 112, 659–662 (2003). V. G. Pushin, R. Z. Valiev, and L. I. Yurchenko, “Processing of nanostructured TiNi-shape memory alloys: Methods, structures, properties, application,” J. Phys. IV 112, 659–662 (2003).
19.
go back to reference V. G. Pushin, “Structure, properties, and application of nanostructures shape memory TiNi-based alloys,” in Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004), pp. 822–828. V. G. Pushin, “Structure, properties, and application of nanostructures shape memory TiNi-based alloys,” in Nanomaterials by Severe Plastic Deformation (Wiley, Weinheim, 2004), pp. 822–828.
20.
go back to reference V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, S3–S55 (2004). V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, “Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr. 97, S3–S55 (2004).
21.
go back to reference V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N. Uksusnikov, and L. I. Yurchenko, “Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys,” Mater. Trans. 47, 694–697 (2006).CrossRef V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N. Uksusnikov, and L. I. Yurchenko, “Effect of severe plastic deformation on the behavior of Ti–Ni shape memory alloys,” Mater. Trans. 47, 694–697 (2006).CrossRef
22.
go back to reference R. Z. Valiev, D. V. Gunderov, and V. G. Pushin, “The new SPD processing routes to fabricate bulk nanostructured materials,” in Ultrafine Grained Materials IV. TMS (The Minerals, Metals & Materials Society), Ed. By Y. T. Zhu, T. G. Langdon, S. L. Semiatin, Z. Horita, M. J. Zehetbauer, and T. C. Lowe (Warrendale, 2006), pp. 105–112. R. Z. Valiev, D. V. Gunderov, and V. G. Pushin, “The new SPD processing routes to fabricate bulk nanostructured materials,” in Ultrafine Grained Materials IV. TMS (The Minerals, Metals & Materials Society), Ed. By Y. T. Zhu, T. G. Langdon, S. L. Semiatin, Z. Horita, M. J. Zehetbauer, and T. C. Lowe (Warrendale, 2006), pp. 105–112.
23.
go back to reference V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. Prockoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503–504, 539–544 (2006).CrossRef V. G. Pushin, R. Z. Valiev, Y. T. Zhu, S. Prockoshkin, D. V. Gunderov, and L. I. Yurchenko, “Effect of equal channel angular pressing and repeated rolling on structure, phase transformation and properties of TiNi shape memory alloys,” Mater. Sci. Forum 503504, 539–544 (2006).CrossRef
24.
go back to reference R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).CrossRef R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, and Yu. Zhu, “Nanostructuring of TiNi alloy by SPD processing for advanced properties,” Mater. Trans. 49, 97–101 (2008).CrossRef
25.
go back to reference N. N. Kuranova, D. V. Gunderov, A. N. Uksusnikov, A. V. Luk’yanov, L. I. Yurchenko, E. A. Prokof’ev, V. G. Pushin, and R. Z. Valiev, “Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by Torsion,” Phys. Met. Metallogr. 108, 556–568 (2009).CrossRef N. N. Kuranova, D. V. Gunderov, A. N. Uksusnikov, A. V. Luk’yanov, L. I. Yurchenko, E. A. Prokof’ev, V. G. Pushin, and R. Z. Valiev, “Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by Torsion,” Phys. Met. Metallogr. 108, 556–568 (2009).CrossRef
26.
go back to reference S. Prokoshkin, V. Brailivski, A. Korotitskiy, K. Inaekyan, S. Dubinsky, M. Filonov, and M. Petrzhic, “Formation of nanostructures in thermo-mechanically-treated Ti–Ni and Ti–Nb–(Zr,Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. Alloy. Comp. 509, 2066–2075 (2011). S. Prokoshkin, V. Brailivski, A. Korotitskiy, K. Inaekyan, S. Dubinsky, M. Filonov, and M. Petrzhic, “Formation of nanostructures in thermo-mechanically-treated Ti–Ni and Ti–Nb–(Zr,Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. Alloy. Comp. 509, 2066–2075 (2011).
27.
go back to reference K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umimota, “Production of TiNi amorphous/nanocrystalline wires with high-strength and elastic modulus by severe cold drawing,” Scr. Mater. 60, 749–752 (2009).CrossRef K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umimota, “Production of TiNi amorphous/nanocrystalline wires with high-strength and elastic modulus by severe cold drawing,” Scr. Mater. 60, 749–752 (2009).CrossRef
28.
go back to reference A. I. Lotkov, V. N. Grishkov, A. A. Baturin, E. F. Dudarev, D. Yu. Zhapova, and V. N. Timkin, “The effect of warm deformation by abc-pressing on the mechanical properties of titanium nickelide,” Lett. Mater. 5, 170–174 (2015).CrossRef A. I. Lotkov, V. N. Grishkov, A. A. Baturin, E. F. Dudarev, D. Yu. Zhapova, and V. N. Timkin, “The effect of warm deformation by abc-pressing on the mechanical properties of titanium nickelide,” Lett. Mater. 5, 170–174 (2015).CrossRef
29.
go back to reference V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).CrossRef V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019).CrossRef
Metadata
Title
The Effect of Thermomechanical Treatment on the Structure and Mechanical Properties of the Ti49.5Ni50.5 Shape-Memory Alloy
Authors
N. N. Kuranova
V. V. Makarov
V. G. Pushin
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600993

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys