Skip to main content
Top
Published in: Journal of Materials Science 19/2019

25-06-2019 | Composites & nanocomposites

The effects of chemical reaction on the microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers

Authors: Yuan Ge, Zhongyu Fu, Yunjiao Deng, Mingyao Zhang, Huixuan Zhang

Published in: Journal of Materials Science | Issue 19/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the effect of chemical structural transformation on the microstructure and mechanical properties of polyacrylonitrile precursor fibers in thermal oxidative stabilization (TOS) process was investigated. The chemical transformation was tracked quantitatively by combining the curve-fitting and second-derivative operations in Fourier transform infrared spectroscopy spectra. The aggregation and radial structural changes in the fibers were investigated by wide-angle X-ray diffraction and scanning electron microscope analysis. It was found that the degree of stabilization of thermal treated fibers in chemical evolution increased with the increase in TOS temperature and time. The increase in the extent of cyclization promoted the formation of conjugated carbonyls, whereas it decreased the crystallinity and crystallite size. Under the action of diffusion process, oxidation reaction caused the fracture morphology of radial structure transformed from ductility to brittleness. The extent of cyclization of fibers controlled in an appropriate range resulted in the high degree of oxidation stabilization and good structural properties, not the higher, the better. This result was evidenced by the excessive oxidative and cross-linking reaction in the skin of fibers resulted in the phenomenon that more obvious skin–core structure and reduced elongation at break when the cyclization degree was more than 83%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Frank E, Steudle L, Ingildeev D, Spoerl J, Buchmeiser M (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262–5298CrossRef Frank E, Steudle L, Ingildeev D, Spoerl J, Buchmeiser M (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262–5298CrossRef
2.
go back to reference Liu Y, Kumar S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev 52:234–258CrossRef Liu Y, Kumar S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev 52:234–258CrossRef
3.
go back to reference Salim N, Blight S, Creighton C, Nunna S, Atkiss S, Razal J (2018) The role of tension and temperature for efficient carbonization of polyacrylonitrile fibers: toward low cost carbon fibers. Ind Eng Chem Res 57:4268–4276CrossRef Salim N, Blight S, Creighton C, Nunna S, Atkiss S, Razal J (2018) The role of tension and temperature for efficient carbonization of polyacrylonitrile fibers: toward low cost carbon fibers. Ind Eng Chem Res 57:4268–4276CrossRef
4.
go back to reference Takaku A, Hashimoto T, Miyoshi T (1985) Tensile properties of carbon fibers from acrylic fibers stabilized under isothermal conditions. J Appl Polym Sci 30:1565–1571CrossRef Takaku A, Hashimoto T, Miyoshi T (1985) Tensile properties of carbon fibers from acrylic fibers stabilized under isothermal conditions. J Appl Polym Sci 30:1565–1571CrossRef
5.
go back to reference Yu M, Wang C, Bai Y, Zhu B, Ji M, Xu Y (2008) Microstructural evolution in polyacrylonitrile fibers during oxidative stabilization. Polym Sci Part B Polym Phys 46:759–765CrossRef Yu M, Wang C, Bai Y, Zhu B, Ji M, Xu Y (2008) Microstructural evolution in polyacrylonitrile fibers during oxidative stabilization. Polym Sci Part B Polym Phys 46:759–765CrossRef
7.
go back to reference Suresh K, Thomas K, Rao B, Nair C (2008) Viscoelastic properties of polyacrylonitrile terpolymers during thermo-oxidative stabilization (cyclization). Polym Adv Technol 19:831–837CrossRef Suresh K, Thomas K, Rao B, Nair C (2008) Viscoelastic properties of polyacrylonitrile terpolymers during thermo-oxidative stabilization (cyclization). Polym Adv Technol 19:831–837CrossRef
8.
go back to reference Gupta A, Harrison I (1997) New aspects in the oxidative stabilization of PAN-based carbon fibers: II. Carbon 35:809–818CrossRef Gupta A, Harrison I (1997) New aspects in the oxidative stabilization of PAN-based carbon fibers: II. Carbon 35:809–818CrossRef
9.
go back to reference Bahl OP, Manocha LM (1975) Effect of preoxidation conditions on mechanical properties of carbon fibres. Carbon 13:297–300CrossRef Bahl OP, Manocha LM (1975) Effect of preoxidation conditions on mechanical properties of carbon fibres. Carbon 13:297–300CrossRef
12.
go back to reference Wang B, Zhao C, Xiao S, Zhang J, Xu L (2012) Effect of the aggregation structure on the thermal shrinkage of polyacrylonitrile fibers during the heat-treatment process. J Appl Polym Sci 125:3545–3551CrossRef Wang B, Zhao C, Xiao S, Zhang J, Xu L (2012) Effect of the aggregation structure on the thermal shrinkage of polyacrylonitrile fibers during the heat-treatment process. J Appl Polym Sci 125:3545–3551CrossRef
13.
go back to reference Liu X, Chen W, Hong Y, Yuan S, Kuroki S, Miyoshi T (2015) Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR. Macromolecules 48:5300–5309CrossRef Liu X, Chen W, Hong Y, Yuan S, Kuroki S, Miyoshi T (2015) Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR. Macromolecules 48:5300–5309CrossRef
14.
go back to reference Arbab S, Zeinolebadi A (2013) A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polym Degrad Stab 98:2537–2545CrossRef Arbab S, Zeinolebadi A (2013) A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polym Degrad Stab 98:2537–2545CrossRef
15.
go back to reference Badii K, Church J, Golkarnarenji G, Naebe M, Khayyam H (2016) Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model. Polym Degrad Stab 131:53–61CrossRef Badii K, Church J, Golkarnarenji G, Naebe M, Khayyam H (2016) Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model. Polym Degrad Stab 131:53–61CrossRef
16.
go back to reference Zhou Y, Han X, Hu X, Xu L, Cao W (2017) Evolution of the structural orientation in polyacrylonitrile precursors during stabilization revealed by in situ synchrotron wide-angle X-ray diffraction and polarized infrared spectroscopy. High Perform Polym 29:1158–1164CrossRef Zhou Y, Han X, Hu X, Xu L, Cao W (2017) Evolution of the structural orientation in polyacrylonitrile precursors during stabilization revealed by in situ synchrotron wide-angle X-ray diffraction and polarized infrared spectroscopy. High Perform Polym 29:1158–1164CrossRef
17.
go back to reference Nunna S, Creighton C, Hameed N, Naebe M, Henderson L, Setty M, Fox B (2017) Radial structure and property relationship in the thermal stabilization of PAN precursor fibres. Polym Test 59:203–211CrossRef Nunna S, Creighton C, Hameed N, Naebe M, Henderson L, Setty M, Fox B (2017) Radial structure and property relationship in the thermal stabilization of PAN precursor fibres. Polym Test 59:203–211CrossRef
18.
go back to reference Nguyen-Thai N, Hong S (2013) Structural evolution of poly (acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials. Macromolecules 46:5882–5889CrossRef Nguyen-Thai N, Hong S (2013) Structural evolution of poly (acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials. Macromolecules 46:5882–5889CrossRef
19.
go back to reference Ghorpade R, Cho D, Hong S (2017) Effect of controlled tacticity of polyacrylonitrile (co) polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films. Carbon 121:502–511CrossRef Ghorpade R, Cho D, Hong S (2017) Effect of controlled tacticity of polyacrylonitrile (co) polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films. Carbon 121:502–511CrossRef
20.
go back to reference Fu Z, Liu B, Li B, Liu Y, Zhang H (2018) Comprehensive and quantitative study on the thermal oxidative stabilization reactions in poly (acrylonitrile-co-itaconic acid) copolymer. J Appl Polym Sci 135:45934CrossRef Fu Z, Liu B, Li B, Liu Y, Zhang H (2018) Comprehensive and quantitative study on the thermal oxidative stabilization reactions in poly (acrylonitrile-co-itaconic acid) copolymer. J Appl Polym Sci 135:45934CrossRef
21.
go back to reference Zhao W, Lu Y, Wang J, Chen Q, Zhou L, Jiang J, Chen L (2016) Improving crosslinking of stabilized polyacrylonitrile fibers and mechanical properties of carbon fibers by irradiating with γ-ray. Polym Degrad Stab 133:16–26CrossRef Zhao W, Lu Y, Wang J, Chen Q, Zhou L, Jiang J, Chen L (2016) Improving crosslinking of stabilized polyacrylonitrile fibers and mechanical properties of carbon fibers by irradiating with γ-ray. Polym Degrad Stab 133:16–26CrossRef
22.
go back to reference Yu M, Wang C, Bai Y, Xu Y, Zhu B (2008) Effect of oxygen uptake and aromatization on the skin–core morphology during the oxidative stabilization of polyacrylonitrile fibers. J Appl Polym Sci 107:1939–1945CrossRef Yu M, Wang C, Bai Y, Xu Y, Zhu B (2008) Effect of oxygen uptake and aromatization on the skin–core morphology during the oxidative stabilization of polyacrylonitrile fibers. J Appl Polym Sci 107:1939–1945CrossRef
23.
go back to reference Watt W, Johnson W (1975) Mechanism of oxidation of polyacrylonitrile fibres. Nature 257:210–212CrossRef Watt W, Johnson W (1975) Mechanism of oxidation of polyacrylonitrile fibres. Nature 257:210–212CrossRef
24.
go back to reference Layden G (1972) Retrograde core formation during oxidation of polyacrylonitrile filaments. Carbon 10:59–63CrossRef Layden G (1972) Retrograde core formation during oxidation of polyacrylonitrile filaments. Carbon 10:59–63CrossRef
25.
go back to reference Wang J, Hu L, Yang C, Zhao W, Lu Y (2016) Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers. RSC Adv 6:73404–73411CrossRef Wang J, Hu L, Yang C, Zhao W, Lu Y (2016) Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers. RSC Adv 6:73404–73411CrossRef
26.
go back to reference Nunna S, Naebe M, Hameed N, Fox B, Creighton C (2016) Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview. Polym Degrad Stab 136:20–30CrossRef Nunna S, Naebe M, Hameed N, Fox B, Creighton C (2016) Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: an overview. Polym Degrad Stab 136:20–30CrossRef
27.
go back to reference Lv M, Ge H, Chen J (2008) Study on the chemical structure and skin-core structure of polyacrylonitrile-based fibers during stabilization. J Polym Res 16:513–517CrossRef Lv M, Ge H, Chen J (2008) Study on the chemical structure and skin-core structure of polyacrylonitrile-based fibers during stabilization. J Polym Res 16:513–517CrossRef
28.
go back to reference Ge H, Liu H, Chen J, Wang C (2009) The microstructure of polyacrylonitrile-stabilized fibers. J Appl Polym Sci 113:2413–2417CrossRef Ge H, Liu H, Chen J, Wang C (2009) The microstructure of polyacrylonitrile-stabilized fibers. J Appl Polym Sci 113:2413–2417CrossRef
29.
go back to reference Liu X, Zhu C, Guo J, Liu Q, Dong H, Gu Y, Liu R, Zhao N et al (2014) Nanoscale dynamic mechanical imaging of the skin–core difference: from PAN precursors to carbon fibers. Mater Lett 128:417–420CrossRef Liu X, Zhu C, Guo J, Liu Q, Dong H, Gu Y, Liu R, Zhao N et al (2014) Nanoscale dynamic mechanical imaging of the skin–core difference: from PAN precursors to carbon fibers. Mater Lett 128:417–420CrossRef
30.
go back to reference Nunna S, Creighton C, Fox B, Naebe M, Maghe M, Tobin M, Bambery K et al (2017) The effect of thermally induced chemical transformations on the structure and properties of carbon fibre precursors. J Mater Chem A 5:7372–7382CrossRef Nunna S, Creighton C, Fox B, Naebe M, Maghe M, Tobin M, Bambery K et al (2017) The effect of thermally induced chemical transformations on the structure and properties of carbon fibre precursors. J Mater Chem A 5:7372–7382CrossRef
31.
go back to reference Gerasimowicz WV, Byler DM, Susi H (1986) Resolution-enhanced FT-IR spectra of soil constituents: humic acid. Appl Spectrosc 40:504–507CrossRef Gerasimowicz WV, Byler DM, Susi H (1986) Resolution-enhanced FT-IR spectra of soil constituents: humic acid. Appl Spectrosc 40:504–507CrossRef
33.
go back to reference Gupta V, Kumar S (1981) The effect of heat setting on the structure and mechanical properties of poly (ethylene terephthalate) fiber. I. Structural changes. J Appl Polym Sci 26:1865–1876CrossRef Gupta V, Kumar S (1981) The effect of heat setting on the structure and mechanical properties of poly (ethylene terephthalate) fiber. I. Structural changes. J Appl Polym Sci 26:1865–1876CrossRef
34.
go back to reference Gupta A, Paliwal D, Bajaj P (1991) Acrylic precursors for carbon fibers. J Macromol Sci Polym Rev 31:1–89 Gupta A, Paliwal D, Bajaj P (1991) Acrylic precursors for carbon fibers. J Macromol Sci Polym Rev 31:1–89
35.
go back to reference Silverstein R, Webster F, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken Silverstein R, Webster F, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken
36.
go back to reference Ouyang Q, Lu C, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab 93:1415–1421CrossRef Ouyang Q, Lu C, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab 93:1415–1421CrossRef
37.
go back to reference Kakida H, Tashiro K, Kobayashi M (1996) Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Relationship between isothermal DSC thermogram and FTIR spectral change of an acrylonitrile/methacrylic acid copolymer. Polym J 28:30–34CrossRef Kakida H, Tashiro K, Kobayashi M (1996) Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Relationship between isothermal DSC thermogram and FTIR spectral change of an acrylonitrile/methacrylic acid copolymer. Polym J 28:30–34CrossRef
38.
go back to reference Nabais J, Carrott P, Carrott M (2005) From commercial textile fibres to activated carbon fibres: chemical transformations. Mater Chem Phys 93:100–108CrossRef Nabais J, Carrott P, Carrott M (2005) From commercial textile fibres to activated carbon fibres: chemical transformations. Mater Chem Phys 93:100–108CrossRef
39.
go back to reference Loginova E, Mikheev I, Volkov D, Proskurnin M (2016) Quantification of copolymer composition (methyl acrylate and itaconic acid) in polyacrylonitrile carbon-fiber precursors by FTIR-spectroscopy. Anal Methods 8:371–380CrossRef Loginova E, Mikheev I, Volkov D, Proskurnin M (2016) Quantification of copolymer composition (methyl acrylate and itaconic acid) in polyacrylonitrile carbon-fiber precursors by FTIR-spectroscopy. Anal Methods 8:371–380CrossRef
40.
go back to reference Bunsell A, Hearle J, Konopasek L, Lomas B (1974) A preliminary study of the fracture morphology of acrylic fibers. J Appl Polym Sci 18:2229–2242CrossRef Bunsell A, Hearle J, Konopasek L, Lomas B (1974) A preliminary study of the fracture morphology of acrylic fibers. J Appl Polym Sci 18:2229–2242CrossRef
Metadata
Title
The effects of chemical reaction on the microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers
Authors
Yuan Ge
Zhongyu Fu
Yunjiao Deng
Mingyao Zhang
Huixuan Zhang
Publication date
25-06-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03781-5

Other articles of this Issue 19/2019

Journal of Materials Science 19/2019 Go to the issue

Premium Partners