Skip to main content
Top
Published in: Physics of Metals and Metallography 6/2022

01-06-2022 | STRENGTH AND PLASTICITY

The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy

Authors: M. V. Barkov, O. I. Mamzurina, M. V. Glavatskikh, R. Yu. Barkov, A. V. Pozdniakov

Published in: Physics of Metals and Metallography | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of impurities on the phase composition and the properties of a new quasibinary Al–Cu–Gd alloy have been investigated. The microstructure in the cast alloy consists of an aluminum solid solution, a dispersed eutectic with the Al8Cu4Gd phase with approximately 1% iron impurity dissolved, and an (AlGdCuSi) phase with an approximate composition of Al80Gd5Cu8Si5. High-temperature homogenization at 600°С results in the fragmentation and spheroidization of the solidification-induced phases, including the silicon-containing phase. The annealing of cold-worked sheets at temperatures up to 250°C results in roughly the same softening associated with the recovery and polygonization processes in alloys with and without impurities. The structure is completely recrystallized after 1-hour annealing at 300°C and has an average grain size of 7.5 μm, which slightly increases to 11 μm after annealing at 550°C. The yield strength of the alloys rolled and annealed at 100–150°С is 227–276 MPa with elongation of 5%. Iron and silicon impurities have no negative effects on the microstructure and mechanical properties of this new alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, 2007).CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, 2007).CrossRef
2.
go back to reference ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2. ASM HANDBOOK. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (The Materials Information Company, 2010), Vol. 2.
3.
go back to reference N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521, 395–400 (2006).CrossRef N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519521, 395–400 (2006).CrossRef
4.
go back to reference N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).CrossRef
5.
go back to reference A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef
6.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020). S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020).
7.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
8.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121, 1227–1232 (2020).CrossRef
9.
go back to reference S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).CrossRef
10.
go back to reference S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).CrossRef
11.
go back to reference A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef
12.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).CrossRef
13.
go back to reference S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73, 3092–3101 (2021).CrossRef S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73, 3092–3101 (2021).CrossRef
14.
go back to reference S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef
15.
go back to reference S. Amer, R. Barkov, and A. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals 11, 476 (2021).CrossRef S. Amer, R. Barkov, and A. Pozdniakov, “Microstructure and mechanical properties of novel quasibinary Al–Cu–Yb and Al–Cu–Gd alloys,” Metals 11, 476 (2021).CrossRef
16.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121, 1002–1007 (2020).CrossRef
17.
go back to reference S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121, 495–499 (2020).CrossRef
18.
go back to reference N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef
19.
go back to reference A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).CrossRef A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).CrossRef
20.
go back to reference C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef
21.
go back to reference A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef
22.
go back to reference A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef
23.
go back to reference R. A. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at % Sc alloy,” Scr. Mater. 55, 437–440 (2006).CrossRef R. A. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at % Sc alloy,” Scr. Mater. 55, 437–440 (2006).CrossRef
24.
go back to reference M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, 7814–7823 (2006).CrossRef M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, 7814–7823 (2006).CrossRef
25.
go back to reference M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at %) alloys,” Acta Mater. 59, 5224–5237 (2011).CrossRef M. E. Van Dalen, D. C. Dunand, and D. N. Seidman, “Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at %) alloys,” Acta Mater. 59, 5224–5237 (2011).CrossRef
26.
go back to reference G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation,” Intermetallics 11, 1125–113 (2003).CrossRef G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation,” Intermetallics 11, 1125–113 (2003).CrossRef
Metadata
Title
The Effects of Impurities on the Phase Composition and the Properties of the Al–Cu–Gd Alloy
Authors
M. V. Barkov
O. I. Mamzurina
M. V. Glavatskikh
R. Yu. Barkov
A. V. Pozdniakov
Publication date
01-06-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060035

Other articles of this Issue 6/2022

Physics of Metals and Metallography 6/2022 Go to the issue