Skip to main content
Top
Published in:

01-06-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Effects Produced by the Rate of Heating on the Aging Temperature on the Structure and Hardening of the Ti–10V–2Fe–3Al Titanium Alloy with Different Carbon Contents

Authors: M. S. Kalienko, A. V. Zhelnina, A. G. Illarionov

Published in: Physics of Metals and Metallography | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect produced by the rate of heating to the aging temperature of 500°C on the character of phase transitions, the formation of a phase-structure state, and the change in hardness in the quenched Ti–10V–2Fe–3Al titanium alloy with different carbon contents has been studied by differential scanning calorimetry (DSC), scanning electron microscopy, X-ray diffraction analysis, and durometry. It has been shown that the change in the heating rate and carbon content of the alloy has an effect on the temperatures of the exothermic peaks of phase transitions associated with that the metastable solid β-solution formed under quenching decomposes in the process of heating. It has been established that a decrease in the rate of heating to the aging temperature from 40 to 10°C/min and an increase in the carbon content from 0.008 to 0.034 wt % in the quenched Ti–10V–2Fe–3Al alloy improves the dispersity of secondary phases formed after quenching and thereby promotes a growth in the alloy hardness. The effect of the heating rate and carbon content on the change in the parameters calculated by the full-profile analysis of X-ray diffraction pattern for the phases detected after treatment is considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, 681–685 (2005).CrossRef R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, 681–685 (2005).CrossRef
2.
go back to reference J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015).CrossRef J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM 67, 1281–1303 (2015).CrossRef
3.
go back to reference J. C. Williams and R. R. Boyer, “Opportunities and issues in the application of titanium alloys for aerospace components,” Metals 10 (6), 705 (2020).CrossRef J. C. Williams and R. R. Boyer, “Opportunities and issues in the application of titanium alloys for aerospace components,” Metals 10 (6), 705 (2020).CrossRef
4.
go back to reference T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3AI,” Metall. Trans. A 11 (12), 1987–1998 (1980).CrossRef T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformations and tensile properties of Ti–10V–2Fe–3AI,” Metall. Trans. A 11 (12), 1987–1998 (1980).CrossRef
5.
go back to reference A. V. Zhelnina, M. S. Kalienko, N. V. Shchetnikov, and A. G. Illarionov, “Transformation of the structure and parameters of phases during aging of a titanium Ti–10V–2Fe–3Al alloy and their relation to strengthening,” Phys. Met. Metallogr. 121, 1220–1226 (2020).CrossRef A. V. Zhelnina, M. S. Kalienko, N. V. Shchetnikov, and A. G. Illarionov, “Transformation of the structure and parameters of phases during aging of a titanium Ti–10V–2Fe–3Al alloy and their relation to strengthening,” Phys. Met. Metallogr. 121, 1220–1226 (2020).CrossRef
6.
go back to reference B. Wang, Z. Liu, Y. Gao, S. Zhang, and X. Wang, “Microstructural evolution during aging of Ti–10V–2Fe–3Al titanium alloy,” J. University Sci. Technol. Beijing, Miner., Metall., Mater. 14 (4), 335–340 (2007). B. Wang, Z. Liu, Y. Gao, S. Zhang, and X. Wang, “Microstructural evolution during aging of Ti–10V–2Fe–3Al titanium alloy,” J. University Sci. Technol. Beijing, Miner., Metall., Mater. 14 (4), 335–340 (2007).
7.
go back to reference O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, “A comparative study of the mechanical properties of high-strength β-titanium alloys,” J. Alloys Compd. 457 (1–2), 296–309 (2008).CrossRef O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, “A comparative study of the mechanical properties of high-strength β-titanium alloys,” J. Alloys Compd. 457 (1–2), 296–309 (2008).CrossRef
8.
go back to reference D. Kent, G. Wang, W. Wang, and M. S. Dargusch, “Influence of ageing temperature and heating rate on the properties and microstructure of β Ti alloy, Ti–6Cr–5Mo–5V–4Al,” Mater. Sci. Eng., A 531, 98–106 (2012).CrossRef D. Kent, G. Wang, W. Wang, and M. S. Dargusch, “Influence of ageing temperature and heating rate on the properties and microstructure of β Ti alloy, Ti–6Cr–5Mo–5V–4Al,” Mater. Sci. Eng., A 531, 98–106 (2012).CrossRef
9.
go back to reference P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50 (3), 1412–1426 (2015).CrossRef P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti–10V–2Fe–3Al alloy,” J. Mater. Sci. 50 (3), 1412–1426 (2015).CrossRef
10.
go back to reference Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, “Effects of ω-phase precipitation on β → α, α''” transformations in a metastable β titanium alloy,” Mater. Sci. Eng., A 312 (1–2), 182–188 (2015).CrossRef Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, “Effects of ω-phase precipitation on β → α, α''” transformations in a metastable β titanium alloy,” Mater. Sci. Eng., A 312 (1–2), 182–188 (2015).CrossRef
11.
go back to reference X. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, and M. H. Loretto, “Analytical electron microscopy of C-free and C-containing Ti–15–3,” Acta Mater. 54 (20), 5433–5448 (2006).CrossRef X. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, and M. H. Loretto, “Analytical electron microscopy of C-free and C-containing Ti–15–3,” Acta Mater. 54 (20), 5433–5448 (2006).CrossRef
12.
go back to reference A. V. Zhelnina, M. S. Kalienko, and N. V. Shchetnikov, “Study of the effect of carbon on the deformation behavior and microstructure of a Ti–10V–2Fe–3Al alloy,” Phys. Met. Metallogr. 122 (2), 154–160 (2021).CrossRef A. V. Zhelnina, M. S. Kalienko, and N. V. Shchetnikov, “Study of the effect of carbon on the deformation behavior and microstructure of a Ti–10V–2Fe–3Al alloy,” Phys. Met. Metallogr. 122 (2), 154–160 (2021).CrossRef
13.
go back to reference S. Cao, X. Zhou, C. V. S. Lim, R. R. Boyer, J. C. Williams, and X. Wu, “A strong and ductile Ti–3Al–8V–6Cr–4Mo–4Zr (Beta-C) alloy achieved by introducing trace carbon addition and cold work,” Scr. Mater. 178, 124–128 (2020).CrossRef S. Cao, X. Zhou, C. V. S. Lim, R. R. Boyer, J. C. Williams, and X. Wu, “A strong and ductile Ti–3Al–8V–6Cr–4Mo–4Zr (Beta-C) alloy achieved by introducing trace carbon addition and cold work,” Scr. Mater. 178, 124–128 (2020).CrossRef
14.
go back to reference T. Alam, P. Kami, L. Cao, S. Nag, C. J. Bettles, X. Wu, and R. Banerjee, “On the role of C addition on alpha precipitation in a beta titanium alloy,” Metall. Mater. Trans. A 45 (3), 1089–1095 (2014).CrossRef T. Alam, P. Kami, L. Cao, S. Nag, C. J. Bettles, X. Wu, and R. Banerjee, “On the role of C addition on alpha precipitation in a beta titanium alloy,” Metall. Mater. Trans. A 45 (3), 1089–1095 (2014).CrossRef
15.
go back to reference Z. Q. Chen, D. Hu, M. H. Loretto, and X. Wu, “Influence of 0.2 wt. % C on the aging response of Ti–15–3,” J. Mater. Sci. Technol. 20 (6), 756–764 (2004).CrossRef Z. Q. Chen, D. Hu, M. H. Loretto, and X. Wu, “Influence of 0.2 wt. % C on the aging response of Ti–15–3,” J. Mater. Sci. Technol. 20 (6), 756–764 (2004).CrossRef
16.
go back to reference U. Tsvikker, Titanium and its Alloys (Mir, Moscow, 1979) [in Russian]. U. Tsvikker, Titanium and its Alloys (Mir, Moscow, 1979) [in Russian].
17.
go back to reference M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile x-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020).CrossRef M. S. Kalienko, A. V. Volkov, and A. V. Zhelnina, “Use of full-profile x-ray analysis for estimation of the dispersity of the secondary alpha phase in high-strength titanium alloys,” Crystallogr. Rep. 65, 412–416 (2020).CrossRef
18.
go back to reference G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable Phases in the Ti–V System: Part I. Neutron Diffraction Study and Assessment of Structural Properties,” Metall. Mater. Trans. A 33 (5), 1307–1317 (2002).CrossRef G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable Phases in the Ti–V System: Part I. Neutron Diffraction Study and Assessment of Structural Properties,” Metall. Mater. Trans. A 33 (5), 1307–1317 (2002).CrossRef
19.
go back to reference A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α''-phase in binary titanium-base alloys with d-metals of V–VIII groups,” Mater. Sci. Eng., A 438–440, 324–326 (2006).CrossRef A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α''-phase in binary titanium-base alloys with d-metals of V–VIII groups,” Mater. Sci. Eng., A 438440, 324–326 (2006).CrossRef
20.
go back to reference J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater. 48 (8), 1009–1015 (2003).CrossRef J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater. 48 (8), 1009–1015 (2003).CrossRef
Metadata
Title
The Effects Produced by the Rate of Heating on the Aging Temperature on the Structure and Hardening of the Ti–10V–2Fe–3Al Titanium Alloy with Different Carbon Contents
Authors
M. S. Kalienko
A. V. Zhelnina
A. G. Illarionov
Publication date
01-06-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060084

Other articles of this Issue 6/2022

Physics of Metals and Metallography 6/2022 Go to the issue