Skip to main content
Top
Published in:

26-06-2024

The energy-loss tensor in the bilayer and monolayer graphene: the role of many-body effects

Author: E. Rostampour

Published in: Journal of Computational Electronics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The energy-loss tensor of bilayer and monolayer graphene is calculated according to the model expressed in Su et al. (Phys Rev Lett 42: 1698 1979). The size and geometry of the nanoscale carbon systems play an important role in their optical properties. Absorption bands of bilayer and monolayer graphene in the 2.81–8.0 eV region indicate sharp structures in each band. The molecular structure of these bands is localized and their crystalline order is long-range. In the x-direction of the electric field, the dielectric tensor and the energy-loss tensor of bilayer and monolayer graphene have the maximum amount. The importance of results for diamond, fullerene, graphite, and graphene is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference DiVincenzo, D.P., Mele, E.J.: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)CrossRef DiVincenzo, D.P., Mele, E.J.: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)CrossRef
2.
go back to reference Ando, T., Nakanishi, T., Saito, R.: Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 67, 2857 (1998)CrossRef Ando, T., Nakanishi, T., Saito, R.: Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 67, 2857 (1998)CrossRef
3.
go back to reference Zheng, Y., Ando, T.: Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002)CrossRef Zheng, Y., Ando, T.: Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002)CrossRef
4.
go back to reference Gusynin, V.P., Sharapov, S.G.: Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)CrossRef Gusynin, V.P., Sharapov, S.G.: Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)CrossRef
5.
go back to reference Peres, N.M.R., Guinea, F., Castro Neto, A.H.: Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)CrossRef Peres, N.M.R., Guinea, F., Castro Neto, A.H.: Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)CrossRef
6.
go back to reference McCann, E., Fal’ko, V.I.: Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006)CrossRef McCann, E., Fal’ko, V.I.: Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006)CrossRef
7.
go back to reference Nilsson, J., Castro Neto, A.H., Peres, N.M.R., Guinea, F.: Electron-electron interactions and the phase diagram of a graphene bilayer. Phys. Rev. B 73, 214418 (2006)CrossRef Nilsson, J., Castro Neto, A.H., Peres, N.M.R., Guinea, F.: Electron-electron interactions and the phase diagram of a graphene bilayer. Phys. Rev. B 73, 214418 (2006)CrossRef
8.
go back to reference Koshino, M., Ando, T.: Transport in bilayer graphene: calculations within a self-consistent Born approximation. Phys. Rev. B 73, 245403 (2006)CrossRef Koshino, M., Ando, T.: Transport in bilayer graphene: calculations within a self-consistent Born approximation. Phys. Rev. B 73, 245403 (2006)CrossRef
9.
go back to reference Nilsson, J., Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Electronic properties of graphene multilayers. Phys. Rev. Lett. 97, 266801 (2006)CrossRef Nilsson, J., Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Electronic properties of graphene multilayers. Phys. Rev. Lett. 97, 266801 (2006)CrossRef
10.
go back to reference Guinea, F., Castro Neto, A.H., Peres, N.M.R.: Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)CrossRef Guinea, F., Castro Neto, A.H., Peres, N.M.R.: Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)CrossRef
11.
go back to reference Katsnelson, M.I.: Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B. 51, 157 (2006)CrossRef Katsnelson, M.I.: Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B. 51, 157 (2006)CrossRef
12.
go back to reference Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)CrossRef Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)CrossRef
13.
go back to reference Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef
14.
go back to reference Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)CrossRef Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)CrossRef
15.
go back to reference Zhang, Y., et al.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)CrossRef Zhang, Y., et al.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)CrossRef
16.
go back to reference Novoselov, K.S., et al.: Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177 (2006)CrossRef Novoselov, K.S., et al.: Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177 (2006)CrossRef
17.
go back to reference Rubtsov, V.I., Shulga, Y.M.: Auger emission of valence band and local electronic structure of niobium carbonitride. J. Electron Spectrosc. Relat. Phenom. 58(3), 247–260 (1992)CrossRef Rubtsov, V.I., Shulga, Y.M.: Auger emission of valence band and local electronic structure of niobium carbonitride. J. Electron Spectrosc. Relat. Phenom. 58(3), 247–260 (1992)CrossRef
18.
go back to reference McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)CrossRef McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)CrossRef
19.
go back to reference Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)CrossRef Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)CrossRef
20.
go back to reference Abergel, D.S.L., Fal’ko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)CrossRef Abergel, D.S.L., Fal’ko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)CrossRef
21.
go back to reference Nilsson, J., Castro Neto, A.H.: Impurities in a biased graphene bilayer. Phys. Rev. Lett. 98, 126801 (2007)CrossRef Nilsson, J., Castro Neto, A.H.: Impurities in a biased graphene bilayer. Phys. Rev. Lett. 98, 126801 (2007)CrossRef
22.
go back to reference Cserti, J., Csordas, A., David, G.: Role of the trigonal warping on the minimal conductivity of bilayer graphene. Phys. Rev. Lett. 99, 066802 (2007)CrossRef Cserti, J., Csordas, A., David, G.: Role of the trigonal warping on the minimal conductivity of bilayer graphene. Phys. Rev. Lett. 99, 066802 (2007)CrossRef
23.
go back to reference Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)CrossRef Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)CrossRef
24.
go back to reference Eberlein, T., Bangert, U., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A.K., Briddon, P.R.: Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)CrossRef Eberlein, T., Bangert, U., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A.K., Briddon, P.R.: Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008)CrossRef
25.
go back to reference Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820 (2009)CrossRef Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820 (2009)CrossRef
26.
go back to reference Lundie, M., Šljivančanin, Ž, Tomić, S.: Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C 3, 7632–7641 (2015)CrossRef Lundie, M., Šljivančanin, Ž, Tomić, S.: Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C 3, 7632–7641 (2015)CrossRef
27.
go back to reference Yang, L.: First-principles study of the optical absorption spectra of electrically gated bilayer graphene. Phys. Rev. B 81, 155445 (2010)CrossRef Yang, L.: First-principles study of the optical absorption spectra of electrically gated bilayer graphene. Phys. Rev. B 81, 155445 (2010)CrossRef
28.
go back to reference Fang, J., Vandenberghe, W.G., Fischetti, M.V.: Microscopic dielectric permittivities of graphene nanoribbons and graphene. Phys. Rev. B 94, 045318 (2016)CrossRef Fang, J., Vandenberghe, W.G., Fischetti, M.V.: Microscopic dielectric permittivities of graphene nanoribbons and graphene. Phys. Rev. B 94, 045318 (2016)CrossRef
29.
go back to reference Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim A. K.: The electronic properties of graphene, arXiv:0709.1163v1 [cond-mat.other] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim A. K.: The electronic properties of graphene, arXiv:​0709.​1163v1 [cond-mat.other]
30.
go back to reference Iorsh, I., Mukhin, I., Shadrivov, I., Belov, P., Kivshar, Y.: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87, 075416 (2013)CrossRef Iorsh, I., Mukhin, I., Shadrivov, I., Belov, P., Kivshar, Y.: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87, 075416 (2013)CrossRef
31.
go back to reference Kheirabadi, N., McCann, E., Falko, V.I.: Cyclotron resonance of the magnetic ratchet effect and second harmonic generation in bilayer graphene. Phys. Rev. B 97, 075415 (2018)CrossRef Kheirabadi, N., McCann, E., Falko, V.I.: Cyclotron resonance of the magnetic ratchet effect and second harmonic generation in bilayer graphene. Phys. Rev. B 97, 075415 (2018)CrossRef
32.
go back to reference Hunt, B.M., Li, J.I.A., Zibrov, A.A., Wang, L., Taniguchi, T., Watanabe, K., Hone, J., Dean, C.R., Zaletel, M., Ashoori, R.C., Young, A.F.: Direct measurement of discrete valley and orbital quantum numbers in a multicomponent quantum Hall system. Nat. Commun. 8, 948 (2017)CrossRef Hunt, B.M., Li, J.I.A., Zibrov, A.A., Wang, L., Taniguchi, T., Watanabe, K., Hone, J., Dean, C.R., Zaletel, M., Ashoori, R.C., Young, A.F.: Direct measurement of discrete valley and orbital quantum numbers in a multicomponent quantum Hall system. Nat. Commun. 8, 948 (2017)CrossRef
33.
go back to reference Castro, E.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Guinea, F., Castro Neto, A.H.: Bilayer graphene: gap tunability and edge properties. J. Phys. Conf. Series 129, 012002 (2008)CrossRef Castro, E.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Guinea, F., Castro Neto, A.H.: Bilayer graphene: gap tunability and edge properties. J. Phys. Conf. Series 129, 012002 (2008)CrossRef
34.
go back to reference Pereira, V.M., Ribeiro, R.M., Peres, N.M.R., Castro Neto, A.H.: Distortion of the perfect lattice structure in bilayer graphene. Phys. Rev. B 79, 045421 (2009)CrossRef Pereira, V.M., Ribeiro, R.M., Peres, N.M.R., Castro Neto, A.H.: Distortion of the perfect lattice structure in bilayer graphene. Phys. Rev. B 79, 045421 (2009)CrossRef
35.
go back to reference Rostampour, E.: The linear optical and magneto-optical susceptibilities and geometric effects of nine La@C82 (C82) crystal isomers. J. Appl. Phys. 116, 133104 (2014)CrossRef Rostampour, E.: The linear optical and magneto-optical susceptibilities and geometric effects of nine La@C82 (C82) crystal isomers. J. Appl. Phys. 116, 133104 (2014)CrossRef
36.
go back to reference Agranovich, V.M., Ginzburg, V.L.: Crystal Optics with Spatial Dispersion and Excitons. Springer, Berlin (1984)CrossRef Agranovich, V.M., Ginzburg, V.L.: Crystal Optics with Spatial Dispersion and Excitons. Springer, Berlin (1984)CrossRef
37.
go back to reference Kadi, F., Malic, E.: Optical properties of Bernal-stacked bilayer graphene: a theoretical study. Phys. Rev. B 89, 045419 (2014)CrossRef Kadi, F., Malic, E.: Optical properties of Bernal-stacked bilayer graphene: a theoretical study. Phys. Rev. B 89, 045419 (2014)CrossRef
38.
go back to reference Chang, C.P.: Analytic model of energy spectrum and absorption spectra of bilayer graphene. J. Appl. Phys. 111, 103714 (2012)CrossRef Chang, C.P.: Analytic model of energy spectrum and absorption spectra of bilayer graphene. J. Appl. Phys. 111, 103714 (2012)CrossRef
39.
go back to reference Ching, W.Y., Huang, M.Z., Xu, Y.N., Harter, W.G., Chan, F.T.: First-principles calculation of optical properties of C60 in the FCC lattice. Phys. Rev. Lett. 67, 2045 (1991)CrossRef Ching, W.Y., Huang, M.Z., Xu, Y.N., Harter, W.G., Chan, F.T.: First-principles calculation of optical properties of C60 in the FCC lattice. Phys. Rev. Lett. 67, 2045 (1991)CrossRef
40.
go back to reference Hirai, H., Terauchi, M., Tanaka, M., Kondo, K.: Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C60 fullerene. Phys. Rev. B 60, 6357 (1999)CrossRef Hirai, H., Terauchi, M., Tanaka, M., Kondo, K.: Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C60 fullerene. Phys. Rev. B 60, 6357 (1999)CrossRef
41.
go back to reference McCann, E., Koshino, M.: The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013)CrossRef McCann, E., Koshino, M.: The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013)CrossRef
42.
go back to reference Chen, S.C., Chiu, C.W., Wu, C.L., Lin, M.F.: Shift- enriched optical properties in bilayer graphene. RSC Adv. 4, 63779 (2014)CrossRef Chen, S.C., Chiu, C.W., Wu, C.L., Lin, M.F.: Shift- enriched optical properties in bilayer graphene. RSC Adv. 4, 63779 (2014)CrossRef
43.
go back to reference Berahman, M., Sharifpour-Boushehri, S., Nadgaran, H.: Investigation on optical properties of bilayer graphene nanoribbons. Opt. Quant. Electron. 47(7), 2103–2115 (2014)CrossRef Berahman, M., Sharifpour-Boushehri, S., Nadgaran, H.: Investigation on optical properties of bilayer graphene nanoribbons. Opt. Quant. Electron. 47(7), 2103–2115 (2014)CrossRef
44.
go back to reference Rubtsov, V.I., Shul’Ga, Y.M.: Electron-energy-loss functions of the solid fullerenes C60 and C70. J. Exp. Theor. Phys. 76(6), 1026–1029 (1993) Rubtsov, V.I., Shul’Ga, Y.M.: Electron-energy-loss functions of the solid fullerenes C60 and C70. J. Exp. Theor. Phys. 76(6), 1026–1029 (1993)
Metadata
Title
The energy-loss tensor in the bilayer and monolayer graphene: the role of many-body effects
Author
E. Rostampour
Publication date
26-06-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02182-5