Skip to main content
Top

2024 | OriginalPaper | Chapter

The Entropic Journey of Kac’s Model

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of this paper is to review the advances that were made during the last few decades in the study of the entropy, and in particular the entropy method, for Kac’s many particle system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
As opposed to the rigorous derivation of it from Newtonian mechanics, which is known as Hilbert’s 6th problem.
 
2
We will be remiss if we won’t mention that there are many other studies on the convergence to equilibrium, such as the impressive [17].
 
3
Equation (3) represents the Navier-Stokes equation without external force.
 
4
One can show that this relation is the only viable one if one assumes conservation of energy and momentum.
 
5
Bogoliubov-Born-Green-Kirkwood-Yvon.
 
6
Kac’s model can be (and have been) extended to a higher dimensional model where this has been rectified (see [16]).
 
7
This condition can be reformulated using empirical measures. \(\left\{ \mu _N\right\} _{N\in \mathbb {N}}\) will be \(\mu _0\)-chaotic if and only if for any random vector \(\left( X_1,\dots ,X_N \right) \) with law \(\mu _N\) we have that the random empirical measure
$$ \mu _N = \frac{1}{N}\sum _{i=1}^N \delta _{X_i} $$
converges in law towards the deterministic measure \(\mu _0\).
 
8
We call is a relative entropy as it measures a function relative to another, in our case the equilibrium. There are many possibilities for entropies and we refer the reader to [1] where they can find some common examples used in other kinetic equations.
 
9
$$ \frac{d}{dt}\left\langle u(t),u_\infty \right\rangle =\left\langle Lu(t),u_\infty \right\rangle =\left\langle u(t),Lu_\infty \right\rangle =0. $$
This is the conservation of mass property for the equation.
 
10
We require this condition since only then do we have that
$$ u(t)-u_\infty = u(t)-\left\langle u(t),u_\infty \right\rangle u_\infty \in \left\{ u_\infty \right\} ^{\perp }. $$
 
11
I.e. a functional such that \(\frac{d}{dt}\mathscr {E}\left( f(t)|f_\infty \right) \le 0\) for any solution, f(t), of the equation.
 
12
In a sense we hope that our entropy and its production have truly captured the geometry of the problem and the relevant properties of the evolution.
 
13
It is worth to note that \(\mathscr {H}_N\) is indeed a relative functional. It measures the entropic distance of \(F_Nd\sigma _N\) from \(1d\sigma _N\).
 
14
The formula presented here was achieved by some simplification of the argument of [20] in the case of the Kac model we present here (see [6] for more details).
 
15
We do need to be quite careful here. The independence that chaos guarantees is always “capped” at a given finite marginal. We have no idea what happens with the correlations between a number of elements that is of order of N.
 
16
I.e. a central limit theorem for the probability density of the independent sum.
 
17
Note that \(\int _{\mathbb {R}} v^2 \mathscr {M}_{a}(v)dv = a\) which shows that each part of \(f_{\delta }\) carries the same kinetic energy.
 
18
In terms of a jump processes, the dependence on \(v_i\) and \(v_j\) is slightly problematic but we continue as if no additional justification for the proposed model is needed.
 
19
We just need to add \(\left( 1+v_1^2+v_2^2 \right) ^\gamma \) inside the integral.
 
Literature
1.
go back to reference Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)MathSciNetCrossRef Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)MathSciNetCrossRef
2.
go back to reference Bobylev, A., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94(3–4), 603–618 (1999)MathSciNetCrossRef Bobylev, A., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94(3–4), 603–618 (1999)MathSciNetCrossRef
3.
go back to reference Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992)MathSciNetCrossRef
4.
go back to reference Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)MathSciNetCrossRef
5.
go back to reference Carlen, E.A., Carvalho, M.C., Einav, A.: Entropy production inequalities for the Kac walk. Kinet. Relat. Models 11(2), 219–238 (2018)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Einav, A.: Entropy production inequalities for the Kac walk. Kinet. Relat. Models 11(2), 219–238 (2018)MathSciNetCrossRef
6.
go back to reference Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model. Kinet. Relat. Models 3(1), 85–122 (2010)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model. Kinet. Relat. Models 3(1), 85–122 (2010)MathSciNetCrossRef
7.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191(1), 1–54 (2003)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191(1), 1–54 (2003)MathSciNetCrossRef
8.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the Kac process with hard sphere collisions in three dimensions. Ann. Prob. 48(6), 2807–2844 (2020)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the Kac process with hard sphere collisions in three dimensions. Ann. Prob. 48(6), 2807–2844 (2020)MathSciNetCrossRef
9.
go back to reference Carlen, E.A., Carvalho, M.C., Loss M.: Kinetic theory and the Kac master equation. In Entropy and the quantum II, Contemporary Mathematics, vol. 552, pp. 1–20. American Mathematical Society, Providence, RI (2011) Carlen, E.A., Carvalho, M.C., Loss M.: Kinetic theory and the Kac master equation. In Entropy and the quantum II, Contemporary Mathematics, vol. 552, pp. 1–20. American Mathematical Society, Providence, RI (2011)
10.
go back to reference Carrapatoso, K., Einav, A.: Chaos and entropic chaos in Kac’s model without high moments. Electron. J. Probab. 18(78), 38 (2013) Carrapatoso, K., Einav, A.: Chaos and entropic chaos in Kac’s model without high moments. Electron. J. Probab. 18(78), 38 (2013)
11.
go back to reference Einav, A.: On Villani’s conjecture concerning entropy production for the Kac master equation. Kinet. Relat. Models 4(2), 479–497 (2011)MathSciNetCrossRef Einav, A.: On Villani’s conjecture concerning entropy production for the Kac master equation. Kinet. Relat. Models 4(2), 479–497 (2011)MathSciNetCrossRef
12.
go back to reference Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013) Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013)
13.
14.
15.
go back to reference Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley-Los Angeles, Calif. (1956) Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley-Los Angeles, Calif. (1956)
16.
go back to reference Jr, McKean, H.P.: An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Comb. Theory 2, 358–382 (1967) Jr, McKean, H.P.: An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Comb. Theory 2, 358–382 (1967)
18.
go back to reference Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)MathSciNetCrossRef Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)MathSciNetCrossRef
19.
go back to reference Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–74. North-Holland, 2002 Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–74. North-Holland, 2002
20.
go back to reference Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)MathSciNetCrossRef Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)MathSciNetCrossRef
Metadata
Title
The Entropic Journey of Kac’s Model
Author
Amit Einav
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_4

Premium Partner