Skip to main content
Top
Published in: Journal of Scientific Computing 3/2015

01-03-2015

The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations

Authors: Hailiang Liu, Hui Yu

Published in: Journal of Scientific Computing | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Liu and Yu (SIAM J Numer Anal 50(3):1207–1239, 2012), we developed a finite volume method for Fokker–Planck equations with an application to finitely extensible nonlinear elastic dumbbell model for polymers subject to homogeneous fluids. The method preserves positivity and satisfies the discrete entropy inequalities, but has only first order accuracy in general cases. In this paper, we overcome this problem by developing uniformly accurate, entropy satisfying discontinuous Galerkin methods for solving Fokker–Planck equations. Both semidiscrete and fully discrete methods satisfy two desired properties: mass conservation and entropy satisfying in the sense that these schemes are shown to satisfy the discrete entropy inequality. These ensure that the schemes are entropy satisfying and preserve the equilibrium solutions. It is also proved the convergence of numerical solutions to the equilibrium solution as time becomes large. At the finite time, a positive truncation is used to generate the nonnegative numerical approximation which is as accurate as the obtained numerical solution. Both one and two-dimensional numerical results are provided to demonstrate the good qualities of the schemes, as well as effects of some canonical homogeneous flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newton. Fluid Mech. 139(3), 153–176 (2006)CrossRefMATH Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newton. Fluid Mech. 139(3), 153–176 (2006)CrossRefMATH
2.
go back to reference Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids Part II: Transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2–3), 98–121 (2007)CrossRefMATH Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids Part II: Transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2–3), 98–121 (2007)CrossRefMATH
3.
go back to reference Arnold, A., Carrillo, J.A., Manzini, C.: Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8(3), 763–782 (2010)CrossRefMATHMathSciNet Arnold, A., Carrillo, J.A., Manzini, C.: Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8(3), 763–782 (2010)CrossRefMATHMathSciNet
4.
go back to reference Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)CrossRefMATHMathSciNet Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)CrossRefMATHMathSciNet
5.
6.
go back to reference Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5):1749–1779, (2001/02) Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5):1749–1779, (2001/02)
7.
go back to reference Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)CrossRefMATH Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)CrossRefMATH
8.
go back to reference Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)CrossRefMATHMathSciNet Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)CrossRefMATHMathSciNet
9.
go back to reference Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)CrossRefMATHMathSciNet Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)CrossRefMATHMathSciNet
10.
go back to reference Buet, C., Dellacherie, S.: On the Chang and Cooper scheme applied to a linear Fokker–Planck equation. Commun. Math. Sci. 8(4), 1079–1090 (2010)CrossRefMATHMathSciNet Buet, C., Dellacherie, S.: On the Chang and Cooper scheme applied to a linear Fokker–Planck equation. Commun. Math. Sci. 8(4), 1079–1090 (2010)CrossRefMATHMathSciNet
11.
go back to reference Buet, C., Dellacherie, S., Sentis, R.: Numerical solution of an ionic Fokker–Planck equation with electronic temperature. SIAM J. Numer. Anal. 39(4), 1219–1253 (2001). (electronic)CrossRefMATHMathSciNet Buet, C., Dellacherie, S., Sentis, R.: Numerical solution of an ionic Fokker–Planck equation with electronic temperature. SIAM J. Numer. Anal. 39(4), 1219–1253 (2001). (electronic)CrossRefMATHMathSciNet
12.
go back to reference Barrett, J.W., Süli, E.: Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers. ESAIM M2AN 46, 949–978 (2012)CrossRefMATH Barrett, J.W., Süli, E.: Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers. ESAIM M2AN 46, 949–978 (2012)CrossRefMATH
13.
go back to reference Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000). (electronic)CrossRefMATHMathSciNet Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000). (electronic)CrossRefMATHMathSciNet
14.
go back to reference Chang, J.S., Cooper, G.: A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)CrossRefMATH Chang, J.S., Cooper, G.: A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)CrossRefMATH
15.
go back to reference Chauvière, C., Lozinski, A.: Simulation of complex viscoelastic flows using Fokker–Planck equation: 3D FENE model. J. Non-Newton. Fluid Mech. 122(1–3), 201–214 (2004)CrossRefMATH Chauvière, C., Lozinski, A.: Simulation of complex viscoelastic flows using Fokker–Planck equation: 3D FENE model. J. Non-Newton. Fluid Mech. 122(1–3), 201–214 (2004)CrossRefMATH
16.
go back to reference Chauvière, C., Lozinski, A.: Simulation of dilute polymer solutions using a Fokker–Planck equation. J. Comput. Fluids 33(5–6), 687–696 (2004)CrossRefMATH Chauvière, C., Lozinski, A.: Simulation of dilute polymer solutions using a Fokker–Planck equation. J. Comput. Fluids 33(5–6), 687–696 (2004)CrossRefMATH
17.
go back to reference Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2007)CrossRefMathSciNet Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2007)CrossRefMathSciNet
18.
go back to reference Chupin, L.: The FENE model for viscoelastic thin film flows. Methods Appl. Anal. 16(2), 217–261 (2009)MATHMathSciNet Chupin, L.: The FENE model for viscoelastic thin film flows. Methods Appl. Anal. 16(2), 217–261 (2009)MATHMathSciNet
19.
21.
go back to reference Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multi-dimensions. In: Whiteman, J.R. (ed.) Proceedings of the Conference on the Mathematics of Finite Elements and Applications, MAFELAP X, pp. 225–238. Elsevier, New York (2000) Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multi-dimensions. In: Whiteman, J.R. (ed.) Proceedings of the Conference on the Mathematics of Finite Elements and Applications, MAFELAP X, pp. 225–238. Elsevier, New York (2000)
22.
go back to reference Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MATHMathSciNet Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MATHMathSciNet
23.
go back to reference Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)CrossRefMATHMathSciNet Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)CrossRefMATHMathSciNet
24.
go back to reference Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)CrossRefMATHMathSciNet Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)CrossRefMATHMathSciNet
25.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MATHMathSciNet Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MATHMathSciNet
26.
go back to reference Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)CrossRefMATHMathSciNet Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)CrossRefMATHMathSciNet
27.
go back to reference Du, Q., Liu, C., Yu, P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4(3), 709–731 (2005). (electronic)CrossRefMATHMathSciNet Du, Q., Liu, C., Yu, P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4(3), 709–731 (2005). (electronic)CrossRefMATHMathSciNet
28.
go back to reference Fan, X.-J.: Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions. J. Non-Newton. Fluid Mech. 17(2), 125–144 (1985)CrossRefMATH Fan, X.-J.: Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions. J. Non-Newton. Fluid Mech. 17(2), 125–144 (1985)CrossRefMATH
29.
go back to reference Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)CrossRefMATHMathSciNet Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)CrossRefMATHMathSciNet
30.
go back to reference Herrchen, M., Öttinger, H.C.: A detailed comparison of various FENE dumbbell models. J. Non-Newton. Fluid Mech. 68(1), 17–42 (1997)CrossRef Herrchen, M., Öttinger, H.C.: A detailed comparison of various FENE dumbbell models. J. Non-Newton. Fluid Mech. 68(1), 17–42 (1997)CrossRef
31.
go back to reference Hyon, Y., Du, Q., Liu, C.: An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials. Multiscale Model. Simul. 7(2), 978–1002 (2008)CrossRefMATHMathSciNet Hyon, Y., Du, Q., Liu, C.: An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials. Multiscale Model. Simul. 7(2), 978–1002 (2008)CrossRefMATHMathSciNet
32.
go back to reference Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis and Applications. Springer, Berlin (2008)MATH Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis and Applications. Springer, Berlin (2008)MATH
33.
go back to reference Jourdain, B., Le Bris, C., Lelièvre, T., Otto, F.: Long time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181(1), 97–148 (2006)CrossRefMATHMathSciNet Jourdain, B., Le Bris, C., Lelièvre, T., Otto, F.: Long time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181(1), 97–148 (2006)CrossRefMATHMathSciNet
34.
go back to reference Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In: Probabilistic Methods in Fluids, pp. 205–223. World Sci. Publ., River Edge, NJ (2003) Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In: Probabilistic Methods in Fluids, pp. 205–223. World Sci. Publ., River Edge, NJ (2003)
35.
go back to reference Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209(1), 162–193 (2004)CrossRefMATHMathSciNet Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209(1), 162–193 (2004)CrossRefMATHMathSciNet
36.
go back to reference Knezevic, D.J., Süli, E.: Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. M2AN Math. Model. Numer. Anal. 43(3), 445–485 (2009)CrossRefMATHMathSciNet Knezevic, D.J., Süli, E.: Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. M2AN Math. Model. Numer. Anal. 43(3), 445–485 (2009)CrossRefMATHMathSciNet
37.
go back to reference Li, B.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)MATH Li, B.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)MATH
38.
go back to reference Larsen, E.W., Levermore, C.D., Pomraning, G.C., Sanderson, J.G.: Discretization methods for one-dimensional Fokker–Planck operators. J. Comput. Phys. 61(3), 359–390 (1985)CrossRefMATHMathSciNet Larsen, E.W., Levermore, C.D., Pomraning, G.C., Sanderson, J.G.: Discretization methods for one-dimensional Fokker–Planck operators. J. Comput. Phys. 61(3), 359–390 (1985)CrossRefMATHMathSciNet
39.
40.
go back to reference Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2009)CrossRefMATHMathSciNet Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2009)CrossRefMATHMathSciNet
41.
go back to reference Liu, H., Shin, J.: The Cauchy–Dirichlet problem for the FENE dumbbell model of polymeric flows. SIAM J. Math. Anal. 44(5), 3617–3648 (2012)CrossRefMATHMathSciNet Liu, H., Shin, J.: The Cauchy–Dirichlet problem for the FENE dumbbell model of polymeric flows. SIAM J. Math. Anal. 44(5), 3617–3648 (2012)CrossRefMATHMathSciNet
42.
go back to reference Liu, H., Shin, J.: Global well-posedness for the microscopic FENE model with a sharp boundary condition. J. Differ. Equ. 252(1), 641–662 (2012)CrossRefMATHMathSciNet Liu, H., Shin, J.: Global well-posedness for the microscopic FENE model with a sharp boundary condition. J. Differ. Equ. 252(1), 641–662 (2012)CrossRefMATHMathSciNet
43.
go back to reference Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)MathSciNet Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)MathSciNet
44.
go back to reference Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of FENE dumbbell model for polymers. SIAM J. Numer. Anal. 50(3), 1207–1239 (2012)CrossRefMATHMathSciNet Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of FENE dumbbell model for polymers. SIAM J. Numer. Anal. 50(3), 1207–1239 (2012)CrossRefMATHMathSciNet
46.
go back to reference Lozinski, A., Chauvière, C.: A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189(2), 607–625 (2003)CrossRefMATHMathSciNet Lozinski, A., Chauvière, C.: A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189(2), 607–625 (2003)CrossRefMATHMathSciNet
47.
48.
go back to reference Masmoudi, N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191(2), 427–500 (2013)CrossRefMATHMathSciNet Masmoudi, N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191(2), 427–500 (2013)CrossRefMATHMathSciNet
49.
go back to reference Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Phys. Funct. Anal. Mat. Contemp. (SBM) 19, 1–29 (1999)MathSciNet Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Phys. Funct. Anal. Mat. Contemp. (SBM) 19, 1–29 (1999)MathSciNet
50.
go back to reference Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous \(hp\) finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)CrossRefMATHMathSciNet Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous \(hp\) finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)CrossRefMATHMathSciNet
51.
go back to reference Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, (1973)
52.
go back to reference Riviére, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, SIAM (2008) Riviére, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, SIAM (2008)
53.
go back to reference Samaey, G., Lelièvre, T., Legat, V.: A numerical closure approach for kinetic models of polymeric fluids: exploring closure relations for FENE dumbbells. Comput. Fluids 43, 119–133 (2011)CrossRefMATHMathSciNet Samaey, G., Lelièvre, T., Legat, V.: A numerical closure approach for kinetic models of polymeric fluids: exploring closure relations for FENE dumbbells. Comput. Fluids 43, 119–133 (2011)CrossRefMATHMathSciNet
54.
go back to reference Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, pp. 149–201, Birkhauser Basel (2009) Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, pp. 149–201, Birkhauser Basel (2009)
55.
go back to reference Shen, J., Yu, H.J.: On the approximation of the Fokker–Planck equation of FENE dumbbell model, I: a new weighted formulation and an optimal Spectral-Galerkin algorithm in 2-D. SIAM J. Numer. Anal. 50(3), 1136–1161 (2012)CrossRefMATHMathSciNet Shen, J., Yu, H.J.: On the approximation of the Fokker–Planck equation of FENE dumbbell model, I: a new weighted formulation and an optimal Spectral-Galerkin algorithm in 2-D. SIAM J. Numer. Anal. 50(3), 1136–1161 (2012)CrossRefMATHMathSciNet
56.
go back to reference van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference (6 June 2005), AIAA-2005-5108 (2005) van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference (6 June 2005), AIAA-2005-5108 (2005)
57.
go back to reference Wang, H., Li, K., Zhang, P.: Crucial properties of the moment closure model FENE-QE. J. Non-Newton. Fluid Mech. 150(2–3), 80–92 (2008)CrossRefMATH Wang, H., Li, K., Zhang, P.: Crucial properties of the moment closure model FENE-QE. J. Non-Newton. Fluid Mech. 150(2–3), 80–92 (2008)CrossRefMATH
58.
go back to reference Warner, H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 11(3), 379–387 (1972)CrossRefMathSciNet Warner, H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 11(3), 379–387 (1972)CrossRefMathSciNet
59.
60.
go back to reference Zhang, H., Zhang, P.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181(2), 373–400 (2006)CrossRefMATHMathSciNet Zhang, H., Zhang, P.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181(2), 373–400 (2006)CrossRefMATHMathSciNet
Metadata
Title
The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations
Authors
Hailiang Liu
Hui Yu
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9878-1

Other articles of this Issue 3/2015

Journal of Scientific Computing 3/2015 Go to the issue

Premium Partner