Skip to main content
Top

2024 | OriginalPaper | Chapter

The Extended Phase Space Method in Kinetic Theory

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article describes the extended phase space technique in the study of kinetic equations and provides a review of some relevant contributions appeared in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The literature reports some examples in which the supplementary variables have other physical meanings: for instance, the two additional variables in [4, 5] are the rescaled distance to the next collision and the corresponding impact parameter.
 
2
A family of functions \(\sigma _\varepsilon {(v)}\) converges in the sense of Young measures to a measure \(\mu _{ {v}}\in \mathscr {M}(\mathscr {V})\) if and only if
$$\begin{aligned}\forall {g}\in C_{0}(\mathbb {R}_{+}),\quad {g}(\sigma _\varepsilon ) \overset{*}{\rightharpoonup }\ \int _{0}^{+\infty } {g}(s) \mu _{ {v}}(\textrm{d}s) \text{ in } L^{\infty }(\boldsymbol{T}^d\times \mathscr {V}) \text{ weak- }*.\end{aligned}$$
.
 
Literature
1.
go back to reference Bernard, E., Caglioti, E., Golse, F.: Homogenization of the linear Boltzmann equation in a domain with a periodic distribution of holes. SIAM J. Math. Anal. 42(5), 2082–2113 (2010)MathSciNetCrossRef Bernard, E., Caglioti, E., Golse, F.: Homogenization of the linear Boltzmann equation in a domain with a periodic distribution of holes. SIAM J. Math. Anal. 42(5), 2082–2113 (2010)MathSciNetCrossRef
2.
go back to reference Bernard, E., Golse, F., Salvarani, F.: Homogenization of transport problems and semigroups. Math. Methods Appl. Sci. 33(10), 1228–1234 (2010)MathSciNetCrossRef Bernard, E., Golse, F., Salvarani, F.: Homogenization of transport problems and semigroups. Math. Methods Appl. Sci. 33(10), 1228–1234 (2010)MathSciNetCrossRef
3.
go back to reference Bernard, E., Salvarani, F.: Homogenization of the linear Boltzmann equation with a highly oscillating scattering term in extended phase space. Appl. Math. Lett. 143, 108672 (2023) Bernard, E., Salvarani, F.: Homogenization of the linear Boltzmann equation with a highly oscillating scattering term in extended phase space. Appl. Math. Lett. 143, 108672 (2023)
4.
go back to reference Caglioti, E., Golse, F.: The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions. C. R. Math. Acad. Sci. Paris 346(7–8), 477–482 (2008)MathSciNetCrossRef Caglioti, E., Golse, F.: The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions. C. R. Math. Acad. Sci. Paris 346(7–8), 477–482 (2008)MathSciNetCrossRef
5.
go back to reference Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat Phys 141(2), 264–317 (2010)MathSciNetCrossRef Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat Phys 141(2), 264–317 (2010)MathSciNetCrossRef
6.
go back to reference Dautray, R.: Méthodes probabilistes pour les équations de la physique. In: Collection du Commissariat à l’Énergie Atomique. Série Synthèses. Commissariat à lÉnergie Atomique, Paris (1989) Dautray, R.: Méthodes probabilistes pour les équations de la physique. In: Collection du Commissariat à l’Énergie Atomique. Série Synthèses. Commissariat à lÉnergie Atomique, Paris (1989)
7.
go back to reference Golse, F.: On the periodic Lorentz gas in the Boltzmann-Grad scaling. Ann. Faculté des Sci. Toulouse (6), 17(4), 735–749 (2008) Golse, F.: On the periodic Lorentz gas in the Boltzmann-Grad scaling. Ann. Faculté des Sci. Toulouse (6), 17(4), 735–749 (2008)
8.
go back to reference Golse, F.: Homogenization and kinetic models in extended phase space. Riv. Math. Univ. Parma (N.S.) 3(1), 71–89 (2012) Golse, F.: Homogenization and kinetic models in extended phase space. Riv. Math. Univ. Parma (N.S.) 3(1), 71–89 (2012)
9.
go back to reference Hutridurga, H., Mula, O., Salvarani, F.: Homogenization in the energy variable for a neutron transport model. Asymptot. Anal. 117(1–2), 1–25 (2020)MathSciNet Hutridurga, H., Mula, O., Salvarani, F.: Homogenization in the energy variable for a neutron transport model. Asymptot. Anal. 117(1–2), 1–25 (2020)MathSciNet
10.
go back to reference Marklof, J., Strömbergsson, A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. (2) 174(1), 225–298 (2011) Marklof, J., Strömbergsson, A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. (2) 174(1), 225–298 (2011)
11.
go back to reference Mathiaud, J., Salvarani, F.: A numerical strategy for radiative transfer problems with higly oscillating opacities. Appl. Math. Comput. 221, 249–256 (2013)MathSciNet Mathiaud, J., Salvarani, F.: A numerical strategy for radiative transfer problems with higly oscillating opacities. Appl. Math. Comput. 221, 249–256 (2013)MathSciNet
12.
13.
go back to reference Tartar, L.: Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Volume 2 of Progress in Nonlinear Differential Equations and their Applications, pp. 925–938. Birkhäuser Boston, Boston, MA (1989) Tartar, L.: Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Volume 2 of Progress in Nonlinear Differential Equations and their Applications, pp. 925–938. Birkhäuser Boston, Boston, MA (1989)
14.
go back to reference Tartar, L.: An Introduction to Navier-Stokes Equation and Oceanography. Lecture Notes of the Unione Matematica Italiana, vol. 1. Springer-Verlag, Berlin, Heidelberg (2006) Tartar, L.: An Introduction to Navier-Stokes Equation and Oceanography. Lecture Notes of the Unione Matematica Italiana, vol. 1. Springer-Verlag, Berlin, Heidelberg (2006)
Metadata
Title
The Extended Phase Space Method in Kinetic Theory
Author
Francesco Salvarani
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_15

Premium Partner