Skip to main content
Top

2021 | OriginalPaper | Chapter

The Extreme Value Evolving Predictor in Multiple Time Series Learning

Authors : Amanda O. C. Ayres, Fernando J. Von Zuben

Published in: Artificial Intelligence and Soft Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper extends the evolving fuzzy-rule-based algorithm denoted Extreme Value evolving Predictor (EVeP) to deal with multivariate time series. EVeP offers a statistically well-founded approach to the online definition of the fuzzy granules at the antecedent and consequent parts of evolving fuzzy rules. The interplay established by these granules is used to formulate a regularized multitask learning problem which employs a sparse graph of the structural relationship promoted by the rules. With this multitask strategy, the Takagi-Sugeno consequent terms of the rules are then properly determined. In this extended version, called Extreme Value evolving Predictor in Multiple Time Series Learning (EVeP_MTSL), we propose an approach that resorts to the similarity degree among the time series. The similarity is calculated by the distance correlation statistical measure extracted from a sliding window of data points belonging to the multiple time series. Noticing that each fuzzy rule is part of a specific time series predictor, the new unified model called EVeP_MTSL updates the sparse graph by composing the relationship established by each pair of fuzzy rules (already provided by EVeP) with the similarity degree of their corresponding time series. We are then exploring not only the current interplay of the multiple rules that compose each evolving predictor, but also the current correlation of the multiple time series being simultaneously predicted. Two computational experiments reveal the superior performance of EVeP_MTSL when compared with other contenders devoted to online multivariate time series prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Ayres, A.O.C., Von Zuben, F.J.: An improved version of the fuzzy set based evolving modeling with multitask learning. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2020) Ayres, A.O.C., Von Zuben, F.J.: An improved version of the fuzzy set based evolving modeling with multitask learning. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2020)
4.
go back to reference Bueno, L., Costa, P., Mendes, I., Cruz, E., Leite, D.: Evolving ensemble of fuzzy models for multivariate time series prediction. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015) Bueno, L., Costa, P., Mendes, I., Cruz, E., Leite, D.: Evolving ensemble of fuzzy models for multivariate time series prediction. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015)
5.
go back to reference Coles, S.: An introduction to statistical modeling of extreme values, vol. 208. Springer (2001) Coles, S.: An introduction to statistical modeling of extreme values, vol. 208. Springer (2001)
6.
go back to reference Dai, J., Xu, A., Liu, X., Yu, C., Wu, Y.: Online sequential model for multivariate time series prediction with adaptive forgetting factor. IEEE Access 8, 175958–175971 (2020)CrossRef Dai, J., Xu, A., Liu, X., Yu, C., Wu, Y.: Online sequential model for multivariate time series prediction with adaptive forgetting factor. IEEE Access 8, 175958–175971 (2020)CrossRef
7.
go back to reference Finner, H.: On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 88(423), 920–923 (1993)MathSciNetCrossRef Finner, H.: On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 88(423), 920–923 (1993)MathSciNetCrossRef
8.
go back to reference Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)CrossRef Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)CrossRef
9.
go back to reference Han, M., Xu, M., Liu, X., Wang, X.: Online multivariate time series prediction using SCKF-\(\gamma \)ESN model. Neurocomputing 147, 315–323 (2015)CrossRef Han, M., Xu, M., Liu, X., Wang, X.: Online multivariate time series prediction using SCKF-\(\gamma \)ESN model. Neurocomputing 147, 315–323 (2015)CrossRef
10.
go back to reference Han, M., Zhang, S., Xu, M., Qiu, T., Wang, N.: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm. IEEE Trans. Cybern. 49(4), 1160–1172 (2018)CrossRef Han, M., Zhang, S., Xu, M., Qiu, T., Wang, N.: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm. IEEE Trans. Cybern. 49(4), 1160–1172 (2018)CrossRef
11.
go back to reference Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)CrossRef Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)CrossRef
12.
go back to reference Pears, R., Widiputra, H., Kasabov, N.: Evolving integrated multi-model framework for on line multiple time series prediction. Evol. Syst. 4(2), 99–117 (2013)CrossRef Pears, R., Widiputra, H., Kasabov, N.: Evolving integrated multi-model framework for on line multiple time series prediction. Evol. Syst. 4(2), 99–117 (2013)CrossRef
13.
go back to reference Székely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)MathSciNetCrossRef Székely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)MathSciNetCrossRef
14.
go back to reference Wang, X., Han, M.: Improved extreme learning machine for multivariate time series online sequential prediction. Eng. Appl. Artif. Intell. 40, 28–36 (2015)CrossRef Wang, X., Han, M.: Improved extreme learning machine for multivariate time series online sequential prediction. Eng. Appl. Artif. Intell. 40, 28–36 (2015)CrossRef
15.
Metadata
Title
The Extreme Value Evolving Predictor in Multiple Time Series Learning
Authors
Amanda O. C. Ayres
Fernando J. Von Zuben
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87986-0_25

Premium Partner