Skip to main content
Top

2017 | OriginalPaper | Chapter

13. The Feasibility Study on Blast Furnace Low Temperature Heat Source Refrigeration for Dehumidified Blast

Authors : Zongwei Han, Fengyuan Zhang, Jing Zhao, Weiliang Li

Published in: Energy Solutions to Combat Global Warming

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global climate change has become the focus of national attention and iron and steel enterprises, which have the feature of high energy consumption and high emissions, have an extremely significant influence on global climate change in Chinese modern industrialization process. The technology of blast furnace low-temperature heat source refrigeration for cooling dehumidifying uses huge amount of waste heat during blast furnace iron making process as the driving force of absorption refrigerator, and then the cooling capacity of preparation is used to reduce the moisture in blast furnace blowing to make the air humidity reduce to optimum value required for the operation, so as to save coke and increase the output. This article takes a certain Chinese large-scale blast furnace as an example, and has determined the technological process of using hot blast stove gas as a driving heat of absorption refrigerator to dehumidify blast furnace. We have determined the optimal outlet air humidity range by establishing system energy consumption model in different blast humidity. We select a certain iron and steel enterprise’s 450 m3 blast furnace and analyze the energy and economy efficiency after using dehumidifying blast system and calculate the equipment’s investment recovery period. The results show that in Liaoning Province when the blast humidity is about 8 g/m3, the system has the best energy economy efficiency and can save 3.06 kgce/t compared with the traditional technological process, and the equipment investment recovery period is 1.8 years, Reasonably use a large number of low temperature waste heat and reduced heat emissions has a significant impact on energy conservation and emissions reduction and climate change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference New Delhi (2010) JFE steel corporation files patent application for method for separating blast furnace gas. India Patents News 14:56–57 New Delhi (2010) JFE steel corporation files patent application for method for separating blast furnace gas. India Patents News 14:56–57
2.
go back to reference Li H, Cang D, Wen Y (2011) China iron and steel industry status quo and development prospect analysis. Smelt Energy 30(4):3–4 Li H, Cang D, Wen Y (2011) China iron and steel industry status quo and development prospect analysis. Smelt Energy 30(4):3–4
3.
go back to reference Yu Z, Hu Y, Cen K (2005) Optimal design of the separate type heat pipe heat exchanger. Zhejiang Univ Sci 6A(Suppl I):23–28 Yu Z, Hu Y, Cen K (2005) Optimal design of the separate type heat pipe heat exchanger. Zhejiang Univ Sci 6A(Suppl I):23–28
4.
go back to reference Liao H (2009) The recycling of hot blast stove gas waste heat. Egang Technol 3:17–19 Liao H (2009) The recycling of hot blast stove gas waste heat. Egang Technol 3:17–19
5.
go back to reference Niu X, Yu J, Wang S (2009) Experimental study on low-temperature waste heat thermoelectric generator. J Power Sourc 188(2):621–626CrossRef Niu X, Yu J, Wang S (2009) Experimental study on low-temperature waste heat thermoelectric generator. J Power Sourc 188(2):621–626CrossRef
6.
go back to reference Liu W (2004) Blast furnace ironmaking dehumidity blast. Metall Power (1):50–51 Liu W (2004) Blast furnace ironmaking dehumidity blast. Metall Power (1):50–51
7.
go back to reference Ji-Liu W (2006) Blast furnace blast dehumidity technology. Anshan Iron Steel Technol (3):32–36 Ji-Liu W (2006) Blast furnace blast dehumidity technology. Anshan Iron Steel Technol (3):32–36
8.
go back to reference Gui-Yi R (2003) Iron science. Metallurgical Industry Press, Beijing, pp 337–340 Gui-Yi R (2003) Iron science. Metallurgical Industry Press, Beijing, pp 337–340
9.
go back to reference Qi Z, Zhuo-Ting H (1978) Japanese blast furnace blast off the wet process. Anshan Iron and Steel Technology (4):87–90 Qi Z, Zhuo-Ting H (1978) Japanese blast furnace blast off the wet process. Anshan Iron and Steel Technology (4):87–90
10.
go back to reference Xuan-Wan Z (1984) Baosteel blast furnace dehumidifier. Ironmaking (1):47–52 Xuan-Wan Z (1984) Baosteel blast furnace dehumidifier. Ironmaking (1):47–52
11.
go back to reference Hong-Sheng S, Pei L (2007) BF blast dehumidity technology applications in several technical problems. China Metall 17(12):115–117 Hong-Sheng S, Pei L (2007) BF blast dehumidity technology applications in several technical problems. China Metall 17(12):115–117
12.
go back to reference Zhang-Ping C, Yong-Zhi S (2004) Pay attention to the impact and moisture regulating effect of the blast furnace. Steel 39(12):1–3 Zhang-Ping C, Yong-Zhi S (2004) Pay attention to the impact and moisture regulating effect of the blast furnace. Steel 39(12):1–3
13.
go back to reference Xing H (2005) Xinyu the 2nd ferromanganese blast off the wet blast effect analysis. Ironmaking Technol Commun (1):8–11 Xing H (2005) Xinyu the 2nd ferromanganese blast off the wet blast effect analysis. Ironmaking Technol Commun (1):8–11
14.
go back to reference Ji-Min W, Yong-Min J, Zhi-Yong Y (2009) Blast dehumidity applications in the north of the blast furnace. Metall Power (3):1–4 Ji-Min W, Yong-Min J, Zhi-Yong Y (2009) Blast dehumidity applications in the north of the blast furnace. Metall Power (3):1–4
15.
go back to reference Jian-Zhen L (2010) Blast dehumidity technology in 3650 m3/min Fan. Metall Power (3):52–56 Jian-Zhen L (2010) Blast dehumidity technology in 3650 m3/min Fan. Metall Power (3):52–56
16.
go back to reference Hai-Rong L, Ai-Juan L (2010) BF blast dehumidity technique in Meishan Iron and Steel Company. Shanghai Energy Conserv (7):29–31 Hai-Rong L, Ai-Juan L (2010) BF blast dehumidity technique in Meishan Iron and Steel Company. Shanghai Energy Conserv (7):29–31
17.
go back to reference Hang, D (2009) BF blast dehumidity technology and their applications development in Masteel. Metall Power (4):62–68 Hang, D (2009) BF blast dehumidity technology and their applications development in Masteel. Metall Power (4):62–68
18.
go back to reference Yong-Qing T (2010) Laiwu Steel blast furnace 3 # 3200 m3 dehumidifying apparatus. Shandong Metall 32(4):76–77 Yong-Qing T (2010) Laiwu Steel blast furnace 3 # 3200 m3 dehumidifying apparatus. Shandong Metall 32(4):76–77
19.
go back to reference Hai-Liang T, Xiao-Dong G, Zhen L (1984) Dehumidification technology in blast furnace iron and steel enterprises. Ironmaking (1):1–4 Hai-Liang T, Xiao-Dong G, Zhen L (1984) Dehumidification technology in blast furnace iron and steel enterprises. Ironmaking (1):1–4
20.
go back to reference Grossmna G (1995) Simulation and performance analysis of a four-effect lithium bromide water absorption chiller. ASHRAE Trans 101(l):95–98 Grossmna G (1995) Simulation and performance analysis of a four-effect lithium bromide water absorption chiller. ASHRAE Trans 101(l):95–98
21.
go back to reference Pxu G, Dai YQ (1997) Theoretical analysis and optimization of a double-effect parallel-flow-type. Absorption Chiller Appl Thermal Eng 117(2):56–59 Pxu G, Dai YQ (1997) Theoretical analysis and optimization of a double-effect parallel-flow-type. Absorption Chiller Appl Thermal Eng 117(2):56–59
22.
go back to reference Jani S (2002) Second Law based optimization of falling film single tube absorption generator. Adv Energy Syst Div 142(11):102–106. American Society of Mechanical Engineers Jani S (2002) Second Law based optimization of falling film single tube absorption generator. Adv Energy Syst Div 142(11):102–106. American Society of Mechanical Engineers
23.
go back to reference Rong L (1987) Discussion of blast furnace dehumidity blast energy. Metall Energy 6(2):22–26 Rong L (1987) Discussion of blast furnace dehumidity blast energy. Metall Energy 6(2):22–26
24.
go back to reference Shu-Ping W (1983) Blast furnace dehumidity blast. Jiangxi Metall 3(4):106–110 Shu-Ping W (1983) Blast furnace dehumidity blast. Jiangxi Metall 3(4):106–110
25.
go back to reference Hua-Jun Z (2012) Refrigerator auxiliary equipment. Huazhong University of Science and Technology Press, Wuhan, pp 318–337 Hua-Jun Z (2012) Refrigerator auxiliary equipment. Huazhong University of Science and Technology Press, Wuhan, pp 318–337
26.
go back to reference Jun-Yun W, Lei W, Zhi-Jiu C (2000) Wet bulb temperature and saturated enthalpy relationship. HVAC (3):42–46 Jun-Yun W, Lei W, Zhi-Jiu C (2000) Wet bulb temperature and saturated enthalpy relationship. HVAC (3):42–46
27.
go back to reference Zeng-Guang W (1984) Discussion on the calculation of the amount of blast furnace gas and empirical data. Ironmaking (1):44–48 Zeng-Guang W (1984) Discussion on the calculation of the amount of blast furnace gas and empirical data. Ironmaking (1):44–48
28.
go back to reference Zhao-Cang H (2007) Fuel and combustion, 2nd edn. Metallurgical Industry Press, Beijing Zhao-Cang H (2007) Fuel and combustion, 2nd edn. Metallurgical Industry Press, Beijing
29.
go back to reference Wei-Guo Z, Tao D, Ai-Hua W (2005) Flame furnace design. Northeastern University Press, Shenyang Wei-Guo Z, Tao D, Ai-Hua W (2005) Flame furnace design. Northeastern University Press, Shenyang
30.
go back to reference Cheung K, Hwang Y, Judge JF, Kolos K, Singh A, Radermacher R (1996) Performance assessment of multistage absorption cycles. Int J Refrig 19(7):473–481CrossRef Cheung K, Hwang Y, Judge JF, Kolos K, Singh A, Radermacher R (1996) Performance assessment of multistage absorption cycles. Int J Refrig 19(7):473–481CrossRef
31.
go back to reference Wang B, Chou X (2006) The utilization of heat pipe exchanger in the recycle of gas waste heat. Univ Mach (3):61–65 Wang B, Chou X (2006) The utilization of heat pipe exchanger in the recycle of gas waste heat. Univ Mach (3):61–65
Metadata
Title
The Feasibility Study on Blast Furnace Low Temperature Heat Source Refrigeration for Dehumidified Blast
Authors
Zongwei Han
Fengyuan Zhang
Jing Zhao
Weiliang Li
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-26950-4_13