Skip to main content
Top

2012 | OriginalPaper | Chapter

The Fluid Dynamics of Feeding In the Upside-Down Jellyfish

Authors : Christina Hamlet, Laura A. Miller, Terry Rodriguez, Arvind Santhanakrishnan

Published in: Natural Locomotion in Fluids and on Surfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In the area of biologically inspired design, the jellyfish serves as a simple case study for understanding the fluid dynamics of unsteady propulsion with the goal of improving the design of underwater vehicles. In addition to locomotion, the study of jellyfish fluid dynamics could also lead to innovations in the design of filtration and sensing systems since an additional purpose of bell pulsations is to bring fluid to the organism for the purposes of feeding and nutrient exchange. The upside-down jellyfish, Cassiopea spp., is particularly well suited for feeding studies since it spends most of its time resting on the seafloor with its oral arms extended upward, pulsing to generate currents used for feeding and waste removal. In this paper, experimental measurements of the bulk flow fields generated by these organisms as well as the results from supporting numerical simulations are reviewed. Contraction, expansion, and pause times over the course of many contraction cycles are reported, and the effects of these parameters on the resulting fluid dynamics are explored. Of particular interest is the length of the rest period between the completion of bell expansion and the contraction of the next cycle. This component of the pulse cycle can be modeled as a Markov process. The discrete time Markov chain model can then be used to simulate cycle times using the distributions found empirically. Numerical simulations are used to explore the effects of the pulse characteristics on the fluid flow generated by the jellyfish. Preliminary results suggest that pause times have significant implications for the efficiency of particle capture and exchange.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[1].
go back to reference Arai MN (1997) A functional biology of scyphozoa. Chapman and Hall, London Arai MN (1997) A functional biology of scyphozoa. Chapman and Hall, London
[3].
go back to reference Bigelow RP (1900) The anatomy and development of Cassiopeia xamachana. Boston Soc Nat Hist Mem 5:191–236 Bigelow RP (1900) The anatomy and development of Cassiopeia xamachana. Boston Soc Nat Hist Mem 5:191–236
[4].
go back to reference Brown GO (2002) Henry Darcy and the making of a law. Water Resour Res Volume 38, Issue 7, pp. 11–1.CrossRef Brown GO (2002) Henry Darcy and the making of a law. Water Resour Res Volume 38, Issue 7, pp. 11–1.CrossRef
[5].
go back to reference Colin SP, Costello JH (2002) Morphology, swimming performance, and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205:427–437 Colin SP, Costello JH (2002) Morphology, swimming performance, and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205:427–437
[6].
go back to reference Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334CrossRef Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334CrossRef
[7].
go back to reference Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290CrossRef Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290CrossRef
[8].
go back to reference Daniel TL (1983) Mechanics and energetics of medusan jet propulsion. Can J Zool 61:1406–1420CrossRef Daniel TL (1983) Mechanics and energetics of medusan jet propulsion. Can J Zool 61:1406–1420CrossRef
[9].
go back to reference Daniel TL (1984) Unsteady aspects of aquatic locomotion. Am Zool 24:121–134 Daniel TL (1984) Unsteady aspects of aquatic locomotion. Am Zool 24:121–134
[10].
go back to reference Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265CrossRef Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265CrossRef
[11].
go back to reference Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming jellyfish exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033CrossRef Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming jellyfish exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033CrossRef
[12].
go back to reference Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages is constrained by animal-fluid interactions. J Exp Biol 210:1868–1873CrossRef Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages is constrained by animal-fluid interactions. J Exp Biol 210:1868–1873CrossRef
[14].
go back to reference Fogelson AL (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134MathSciNetMATHCrossRef Fogelson AL (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134MathSciNetMATHCrossRef
[15].
go back to reference Hamlet C, Santhanakrishnan A, Miller LA (2011) A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea spp. J Exp Biol 214:1911–1921CrossRef Hamlet C, Santhanakrishnan A, Miller LA (2011) A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea spp. J Exp Biol 214:1911–1921CrossRef
[16].
go back to reference Hayward RT (2007) Modeling experiments on pacemaker interactions in scyphomedusae. Master’s thesis, University of North Carolina at Wilmington, Department of Biology and Marine Biology Hayward RT (2007) Modeling experiments on pacemaker interactions in scyphomedusae. Master’s thesis, University of North Carolina at Wilmington, Department of Biology and Marine Biology
[17].
go back to reference Heller HC, Sadava DE, Orians GH (2006) Life, the science of biology. W.H. Freeman, New York Heller HC, Sadava DE, Orians GH (2006) Life, the science of biology. W.H. Freeman, New York
[18].
go back to reference Herschlag G, Miller LA (2011) Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J Theor Biol 285:84–95CrossRef Herschlag G, Miller LA (2011) Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J Theor Biol 285:84–95CrossRef
[19].
go back to reference Jung E, Peskin CS (2001) Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J Sci Comput 23:19–45MathSciNetMATHCrossRef Jung E, Peskin CS (2001) Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J Sci Comput 23:19–45MathSciNetMATHCrossRef
[20].
[21].
go back to reference Larson RJ (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter- feeding scyphomedusa from the NE Gulf of Mexico. Estuar Coast Shelf Sci 32:511–525MathSciNetCrossRef Larson RJ (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter- feeding scyphomedusa from the NE Gulf of Mexico. Estuar Coast Shelf Sci 32:511–525MathSciNetCrossRef
[22].
[23].
go back to reference Lipinski D, Mohseni K (2009) Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2436–2447CrossRef Lipinski D, Mohseni K (2009) Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2436–2447CrossRef
[24].
go back to reference McHenry MJ, Jed J (2003) The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish Aurelia aurita. J Exp Biol 206:4125–4137CrossRef McHenry MJ, Jed J (2003) The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish Aurelia aurita. J Exp Biol 206:4125–4137CrossRef
[25].
go back to reference Miller LA, Peskin CS (2004) When vortices stick: an aerodynamic transition in tiny insect flight. J Exp Biol 207:3073–3088CrossRef Miller LA, Peskin CS (2004) When vortices stick: an aerodynamic transition in tiny insect flight. J Exp Biol 207:3073–3088CrossRef
[26].
go back to reference Miller LA, Peskin CS (2009) Flexible clap and fling in tiny insect flight. J Exp Biol 212:3076-3090CrossRef Miller LA, Peskin CS (2009) Flexible clap and fling in tiny insect flight. J Exp Biol 212:3076-3090CrossRef
[27].
go back to reference Omoto C, Dillon RH, Fauci LJ, Yang X (2007) Fluid dynamic models of flagellar and ciliary beating. Ann N Y Acad Sci 1101:494–505CrossRef Omoto C, Dillon RH, Fauci LJ, Yang X (2007) Fluid dynamic models of flagellar and ciliary beating. Ann N Y Acad Sci 1101:494–505CrossRef
[29].
go back to reference Peskin CS, McQueen DM (1996) Fluid dynamics of the heart and its valves. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology, 2nd edn. Prentice-Hall, New Jersey Peskin CS, McQueen DM (1996) Fluid dynamics of the heart and its valves. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology, 2nd edn. Prentice-Hall, New Jersey
[30].
go back to reference Peskin CS, Kramer PR, Atzberger PJ (2008) On the foundations of the stochastic immersed boundary method. Comput Method Appl Mech Eng 197:2232–2249MathSciNetMATHCrossRef Peskin CS, Kramer PR, Atzberger PJ (2008) On the foundations of the stochastic immersed boundary method. Comput Method Appl Mech Eng 197:2232–2249MathSciNetMATHCrossRef
[31].
go back to reference Sahin M, Mohseni K, Colin SP (2009) The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2656-2667CrossRef Sahin M, Mohseni K, Colin SP (2009) The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2656-2667CrossRef
[32].
go back to reference Santhanakrishnan A, Hamlet C, Dollinger M, Colin S, Miller LA Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol. 215: 2369–2381 Santhanakrishnan A, Hamlet C, Dollinger M, Colin S, Miller LA Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol. 215: 2369–2381
[33].
go back to reference Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Canad J Zool 80:1654–1669CrossRef Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Canad J Zool 80:1654–1669CrossRef
[34].
go back to reference Stockie JM (2009) Modelling and simulation of porous immersed boundaries. Comput Struct 87:701–709CrossRef Stockie JM (2009) Modelling and simulation of porous immersed boundaries. Comput Struct 87:701–709CrossRef
[35].
go back to reference Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72CrossRef Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72CrossRef
[36].
go back to reference Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Poll Bull. 52:515–521CrossRef Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Poll Bull. 52:515–521CrossRef
[37].
go back to reference Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162CrossRef Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162CrossRef
[38].
go back to reference Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362CrossRef Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362CrossRef
Metadata
Title
The Fluid Dynamics of Feeding In the Upside-Down Jellyfish
Authors
Christina Hamlet
Laura A. Miller
Terry Rodriguez
Arvind Santhanakrishnan
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_3

Premium Partner