Skip to main content
Top
Published in:

01-10-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Formation of Segregations and Nanofaceting of Asymmetric Special Grain Boundaries in Al

Authors: L. E. Kar’kina, I. N. Kar’kin, Yu. N. Gornostyrev

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Formation of segregations of Mg and Ni at the asymmetric special tilt grain boundaries Σ5{010}/{340}❬001❭ and Σ5{110}/{710}❬001❭ in Al has been studied using atomistic simulation methods. It has been shown that the formation of segregations can considerably modify the structure of asymmetric grain boundaries (GBs). Although the segregation of Mg is accompanied by local distortions of a GB, its plane slightly deviates from the initial position. At the same time, the segregation of Ni results in nanofaceting of GBs. The role of features of a chemical bond in reconstructing GBs induced by segregations is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Heidelberg, 1970).CrossRef W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Heidelberg, 1970).CrossRef
2.
go back to reference A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995). A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).
3.
go back to reference P. Lejček, Grain Boundary Segregation in Metals (Springer, New York, 2010).CrossRef P. Lejček, Grain Boundary Segregation in Metals (Springer, New York, 2010).CrossRef
4.
go back to reference L. Priester, Grain Boundaries: From Theory to Engineering (Springer, New York, 2014). L. Priester, Grain Boundaries: From Theory to Engineering (Springer, New York, 2014).
5.
go back to reference B. B. Straumal, O. A. Kogtenkova, A. S. Gornakova, V. G. Sursaeva, and B. Baretzky, “Review: grain boundary faceting–roughening phenomena,” J. Mater. Sci. 51, 382–404 (2016).CrossRef B. B. Straumal, O. A. Kogtenkova, A. S. Gornakova, V. G. Sursaeva, and B. Baretzky, “Review: grain boundary faceting–roughening phenomena,” J. Mater. Sci. 51, 382–404 (2016).CrossRef
6.
go back to reference P. R. Cantwell, T. Frolov, T. J. Rupert, A. R. Krause, C. J. Marvel, G. S. Rohrer, J. M. Rickman, and M. P. Harmer, “Grain boundary complexion transitions,” Annu. Rev. Mater. Res. 50, 465–492 (2020).CrossRef P. R. Cantwell, T. Frolov, T. J. Rupert, A. R. Krause, C. J. Marvel, G. S. Rohrer, J. M. Rickman, and M. P. Harmer, “Grain boundary complexion transitions,” Annu. Rev. Mater. Res. 50, 465–492 (2020).CrossRef
7.
go back to reference J. W. Cahn, “Transitions and phase equilibria among grain boundary structures,” J. Phys. Colloq. 43, C6-199–C6-213 (1982). J. W. Cahn, “Transitions and phase equilibria among grain boundary structures,” J. Phys. Colloq. 43, C6-199–C6-213 (1982).
8.
go back to reference J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Léonard, “Why do grain boundaries exhibit finite facet lengths,” Phys. Rev. Lett. 90, 246102 (2003).CrossRef J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Léonard, “Why do grain boundaries exhibit finite facet lengths,” Phys. Rev. Lett. 90, 246102 (2003).CrossRef
9.
go back to reference Z. X. Wu, Y. W. Zhang, and D. J. Srolovitz, “Grain boundary finite length faceting,” Acta Mater. 57, 4278–4287 (2009).CrossRef Z. X. Wu, Y. W. Zhang, and D. J. Srolovitz, “Grain boundary finite length faceting,” Acta Mater. 57, 4278–4287 (2009).CrossRef
10.
go back to reference F. C. Frank, The Geometrical Thermodynamics of Surfaces. Metal Surfaces: Structure, Energetics and Kinetics (Amer. Soc. Metals, Metal Park, 1963), pp. 1–15. F. C. Frank, The Geometrical Thermodynamics of Surfaces. Metal Surfaces: Structure, Energetics and Kinetics (Amer. Soc. Metals, Metal Park, 1963), pp. 1–15.
11.
go back to reference D. L. Medlin, K. Hattar, J. A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).CrossRef D. L. Medlin, K. Hattar, J. A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).CrossRef
12.
go back to reference N. J. Peter, T. Frolov, M. J. Duarte, R. Hadian, C. Ophus, C. Kirchlechner, C. H. Liebscher, G. Dehm, “Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper,” Phys. Rev. Lett. 121, 255502 (2018).CrossRef N. J. Peter, T. Frolov, M. J. Duarte, R. Hadian, C. Ophus, C. Kirchlechner, C. H. Liebscher, G. Dehm, “Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper,” Phys. Rev. Lett. 121, 255502 (2018).CrossRef
13.
go back to reference H. Zhao, L. Huber, W. Lu, N. J. Peter, D. An, F. De Geuser, G. Dehm, D. Ponge, J. Neugebauer, B. Gault, and D. Raabe, “Interplay of chemistry and faceting at grain boundaries in a model Al alloy,” Phys. Rev. Lett. 124, 106102 (2020).CrossRef H. Zhao, L. Huber, W. Lu, N. J. Peter, D. An, F. De Geuser, G. Dehm, D. Ponge, J. Neugebauer, B. Gault, and D. Raabe, “Interplay of chemistry and faceting at grain boundaries in a model Al alloy,” Phys. Rev. Lett. 124, 106102 (2020).CrossRef
14.
go back to reference Pe N. J. Peter, M. J. Duarte, C. Kirchlechner, C. H. Liebscher, and G. Dehm, “Faceting diagram for Ag segregation induced nanofaceting at an asymmetric Cu tilt grain boundary,” Acta Mater. 214, 116960 (2021).CrossRef Pe N. J. Peter, M. J. Duarte, C. Kirchlechner, C. H. Liebscher, and G. Dehm, “Faceting diagram for Ag segregation induced nanofaceting at an asymmetric Cu tilt grain boundary,” Acta Mater. 214, 116960 (2021).CrossRef
15.
go back to reference J. Creuze, F. Berthier, R. Tétot, and B. Legrand, “Wetting and structural transition induced by segregation at grain boundaries: A Monte Carlo study,” Phys. Rev. Lett. 86, 5735 (2001).CrossRef J. Creuze, F. Berthier, R. Tétot, and B. Legrand, “Wetting and structural transition induced by segregation at grain boundaries: A Monte Carlo study,” Phys. Rev. Lett. 86, 5735 (2001).CrossRef
16.
go back to reference L. Karkina, I. Karkin, A. Kuznetsov, and Y. Gornostyrev, “Alloying element segregation and grain boundary reconstruction, atomistic modeling,” Metals 9, 1319 (2019).CrossRef L. Karkina, I. Karkin, A. Kuznetsov, and Y. Gornostyrev, “Alloying element segregation and grain boundary reconstruction, atomistic modeling,” Metals 9, 1319 (2019).CrossRef
17.
go back to reference L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Effect of alloying element segregations on the grain boundary sliding in Al–Mg and Al–Ni alloy bicrystals: atomistic modeling,” Phys. Met. Metallogr. 121(9), 817–822 (2020).CrossRef L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Effect of alloying element segregations on the grain boundary sliding in Al–Mg and Al–Ni alloy bicrystals: atomistic modeling,” Phys. Met. Metallogr. 121(9), 817–822 (2020).CrossRef
18.
go back to reference A. Kuznetsov, L. Karkina, Yu. Gornostyrev, and P. Korzhavyi, “Effects of Zn and Mg segregations on the grain boundary sliding and cohesion in Al: Ab Initio modeling,” Metals 11, 631 (2021).CrossRef A. Kuznetsov, L. Karkina, Yu. Gornostyrev, and P. Korzhavyi, “Effects of Zn and Mg segregations on the grain boundary sliding and cohesion in Al: Ab Initio modeling,” Metals 11, 631 (2021).CrossRef
19.
go back to reference L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Grain boundary sliding along special asymmetric grain boundaries in the Al bicrystals: Atomistic molecular dynamics simulation,” Phys. Met. Metallogr. 122(11), 1103–1111 (2021).CrossRef L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Grain boundary sliding along special asymmetric grain boundaries in the Al bicrystals: Atomistic molecular dynamics simulation,” Phys. Met. Metallogr. 122(11), 1103–1111 (2021).CrossRef
20.
21.
go back to reference M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, “Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys,” Philos. Mag. 89, 3269 (2009).CrossRef M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, “Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys,” Philos. Mag. 89, 3269 (2009).CrossRef
22.
go back to reference G. P. P. Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Philos. Mag. 89(34–36), 3245–3267 (2009).CrossRef G. P. P. Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Philos. Mag. 89(34–36), 3245–3267 (2009).CrossRef
23.
go back to reference L. E. Karkina, I. N. Karkin, A. R. Kuznetsov, I. K. Razumov, P. A. Korzhavyi, and Y. N. Gornostyrev, “Solute-grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling,” Comput. Mater. Sci. 112, 18–26 (2016).CrossRef L. E. Karkina, I. N. Karkin, A. R. Kuznetsov, I. K. Razumov, P. A. Korzhavyi, and Y. N. Gornostyrev, “Solute-grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling,” Comput. Mater. Sci. 112, 18–26 (2016).CrossRef
Metadata
Title
The Formation of Segregations and Nanofaceting of Asymmetric Special Grain Boundaries in Al
Authors
L. E. Kar’kina
I. N. Kar’kin
Yu. N. Gornostyrev
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22601020

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue