Skip to main content
Top

2010 | OriginalPaper | Chapter

19. The Forward and Adjoint Methods of Global Electromagnetic Induction forCHAMP Magnetic Data

Author : Zdeněk Martinec

Published in: Handbook of Geomathematics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Detailed mathematical derivations of the forward and adjoint sensitivity methods are presented for computing the electromagnetic induction response of a 2-D heterogeneous conducting sphere to a transient external electric current excitation. The forward method is appropriate for determining the induced spatiotemporal electromagnetic signature at satellite altitudes associated with the upper and mid-mantle conductivity heterogeneities, while the adjoint method provides an efficient tool for computing the sensitivity of satellite magnetic data to the conductivity structure of the Earth’s interior. The forward and adjoint initial boundary-value problems, both solved in the time domain, are identical, except for the specification of the prescribed boundary conditions. The respective boundary-value data at the satellite’s altitude are the X magnetic component measured by the CHAMP vector magnetometer along the satellite track for the forward method and the difference between the measured and predicted Z magnetic component for the adjoint method. Both methods are alternatively formulated for the case when the time-dependent, spherical harmonic Gauss coefficients of the magnetic field generated by external equatorial ring currents in the magnetosphere and the magnetic field generated by the induced eddy currents in the Earth, respectively, are specified. Before applying these methods, the CHAMP vector magnetic data are modeled by a two-step, track-by-track spherical harmonic analysis. As a result, the X and Z components of CHAMP magnetic data are represented in terms of series of Legendre polynomial derivatives. Four examples of the two-step analysis of the signals recorded by the CHAMP vector magnetometer are presented. The track-by-track analysis is applied to the CHAMP data recorded in the year 2001, yielding a 1-year time series of spherical harmonic coefficients. The output of the forward modeling of electromagnetic induction, that is, the predicted Z component at satellite altitude, can then be compared with the satellite observations. The squares of the differences between the measured and predicted Z component summed up over all CHAMP tracks determine the misfit. The sensitivity of the CHAMP data, that is, the partial derivatives of the misfit with respect to mantle conductivity parameters, are then obtained by the scalar product of the forward and adjoint solutions, multiplied by the gradient of the conductivity and integrated over all CHAMP tracks. Such exactly determined sensitivities are checked against the numerical differentiation of the misfit, and a good agreement is obtained. The attractiveness of the adjoint method lies in the fact that the adjoint sensitivities are calculated for the price of only an additional forward calculation, regardless of the number of conductivity parameters. However, since the adjoint solution proceeds backwards in time, the forward solution must be stored at each time step, leading to memory requirements that are linear with respect to the number of steps undertaken. Having determined the sensitivities, the conjugate gradient inversion is run to infer 1-D and 2-D conductivity structures of the Earth based on the CHAMP residual time series (after the subtraction of the static field and secular variations as described by the CHAOS model) for the year 2001. It is shown that this time series is capable of resolving both 1-D and 2-D structures in the upper mantle and the upper part of the lower mantle, while it is not sufficiently long to reliably resolve the conductivity structure in the lower part of the lower mantle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Avdeev DB, Avdeeva AD (2006) A rigorous three-dimensional magnetotelluric inversion. PIER 62:41–48CrossRef Avdeev DB, Avdeeva AD (2006) A rigorous three-dimensional magnetotelluric inversion. PIER 62:41–48CrossRef
go back to reference Banks R (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astr Soc 17:457–487 Banks R (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astr Soc 17:457–487
go back to reference Banks RJ, Ainsworth JN (1992) Global induction and the spatial structure of mid-latitude geomagnetic variations. Geophys J Int 110:251–266CrossRef Banks RJ, Ainsworth JN (1992) Global induction and the spatial structure of mid-latitude geomagnetic variations. Geophys J Int 110:251–266CrossRef
go back to reference Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York
go back to reference Cacuci DG (2003) Sensitivity and uncertainty analysis. Volume I. Theory. Chapman & Hall/CRC, Boca Raton, FLMATHCrossRef Cacuci DG (2003) Sensitivity and uncertainty analysis. Volume I. Theory. Chapman & Hall/CRC, Boca Raton, FLMATHCrossRef
go back to reference Constable S, Constable C (2004) Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantleconductivity. Geochem Geophys Geosyst 5:Q01006. doi:10.1029/2003GC000634CrossRef Constable S, Constable C (2004) Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantleconductivity. Geochem Geophys Geosyst 5:Q01006. doi:10.1029/2003GC000634CrossRef
go back to reference Daglis IA, Thorne RM, Baumjohann W, Orsini S (1999) The terrestrial ring current: origin, formation and decay. Rev Geophys 37:407–438CrossRef Daglis IA, Thorne RM, Baumjohann W, Orsini S (1999) The terrestrial ring current: origin, formation and decay. Rev Geophys 37:407–438CrossRef
go back to reference Didwall EM (1984) The electrical conductivity of the upper mantle as estimated from satellite magnetic field data. J Geophys Res 89:537–542CrossRef Didwall EM (1984) The electrical conductivity of the upper mantle as estimated from satellite magnetic field data. J Geophys Res 89:537–542CrossRef
go back to reference Dorn O, Bertete-Aquirre H, Berryman JG, Papanicolaou GC (1999) A nonlinear inversion method for 3-D electromagnetic imaging using adjoint fields. Inverse Prob 15:1523–1558MATHCrossRef Dorn O, Bertete-Aquirre H, Berryman JG, Papanicolaou GC (1999) A nonlinear inversion method for 3-D electromagnetic imaging using adjoint fields. Inverse Prob 15:1523–1558MATHCrossRef
go back to reference Eckhardt D, Larner K, Madden T (1963) Long periodic magnetic fluctuations and mantle conductivity estimates. J Geophys Res 68:6279–6286 Eckhardt D, Larner K, Madden T (1963) Long periodic magnetic fluctuations and mantle conductivity estimates. J Geophys Res 68:6279–6286
go back to reference Everett ME, Martinec Z (2003) Spatiotemporal response of a conducting sphere under simulated geomagnetic storm conditions. Phys Earth Planet Inter 138:163–181CrossRef Everett ME, Martinec Z (2003) Spatiotemporal response of a conducting sphere under simulated geomagnetic storm conditions. Phys Earth Planet Inter 138:163–181CrossRef
go back to reference Everett ME, Schultz A (1996) Geomagnetic induction in a heterogeneous sphere: Az-imuthally symmetric test computations and the response of an undulating 660-km discontinuity. J Geophys Res 101:2765–2783CrossRef Everett ME, Schultz A (1996) Geomagnetic induction in a heterogeneous sphere: Az-imuthally symmetric test computations and the response of an undulating 660-km discontinuity. J Geophys Res 101:2765–2783CrossRef
go back to reference Fainberg EB, Kuvshinov AV, Singer BSh (1990) Electromagnetic induction in a spherical Earth with non-uniform oceans and continents in electric contact with the underlying medium – I. Theory, method and example. Geophys J Int 102:273–281MATHCrossRef Fainberg EB, Kuvshinov AV, Singer BSh (1990) Electromagnetic induction in a spherical Earth with non-uniform oceans and continents in electric contact with the underlying medium – I. Theory, method and example. Geophys J Int 102:273–281MATHCrossRef
go back to reference Farquharson CG, Oldenburg DW (1996) Approximate sensitivities for the electromagnetic inverse problem. Geophys J Int 126:235–252CrossRef Farquharson CG, Oldenburg DW (1996) Approximate sensitivities for the electromagnetic inverse problem. Geophys J Int 126:235–252CrossRef
go back to reference Hamano Y (2002) A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth. Geophys J Int 150:753–769CrossRef Hamano Y (2002) A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth. Geophys J Int 150:753–769CrossRef
go back to reference Hultqvist B (1973) Perturbations of the geomagnetic field. In: Egeland A, Holter O, Omholt A (eds) Cosmical geophysics. Universitetsforlaget, Oslo, pp 193–201 Hultqvist B (1973) Perturbations of the geomagnetic field. In: Egeland A, Holter O, Omholt A (eds) Cosmical geophysics. Universitetsforlaget, Oslo, pp 193–201
go back to reference Jupp DLB, Vozoff K (1977) Two-dimensional magnetotelluric inversion. Geophys J R Astr Soc 50:333–352 Jupp DLB, Vozoff K (1977) Two-dimensional magnetotelluric inversion. Geophys J R Astr Soc 50:333–352
go back to reference Kelbert A, Egbert GD, Schultz A (2008) Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys J Int 173:365–381CrossRef Kelbert A, Egbert GD, Schultz A (2008) Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys J Int 173:365–381CrossRef
go back to reference Kivelson MG, Russell CT (1995) Introduction to space physics, Cambridge University Press, Cambridge. Kivelson MG, Russell CT (1995) Introduction to space physics, Cambridge University Press, Cambridge.
go back to reference Korte M, Constable S, Constable C (2003) Separation of external magnetic signal for induction studies. In: Reigber Ch, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 315–320 Korte M, Constable S, Constable C (2003) Separation of external magnetic signal for induction studies. In: Reigber Ch, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 315–320
go back to reference Křížek M, Neittaanmäki P (1990) Finite element approximation of variational problems and applications. Longmann Scientific and Technical/Wiley, New YorkMATH Křížek M, Neittaanmäki P (1990) Finite element approximation of variational problems and applications. Longmann Scientific and Technical/Wiley, New YorkMATH
go back to reference Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi:10.1029/2006GL027083CrossRef Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi:10.1029/2006GL027083CrossRef
go back to reference Kuvshinov AV, Avdeev DB, Pankratov OV (1999a) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric earth models in comparison to observations. Geophys J Int 137:630–650CrossRef Kuvshinov AV, Avdeev DB, Pankratov OV (1999a) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric earth models in comparison to observations. Geophys J Int 137:630–650CrossRef
go back to reference Kuvshinov AV, Avdeev DB, Pankratov OV, Golyshev SA (1999b) Modelling electromagnetic fields in 3-D spherical earth using fast integral equation approach. Expanded abstract of the 2nd International Symposium on 3-D Electromagnetics, pp 84–88 Kuvshinov AV, Avdeev DB, Pankratov OV, Golyshev SA (1999b) Modelling electromagnetic fields in 3-D spherical earth using fast integral equation approach. Expanded abstract of the 2nd International Symposium on 3-D Electromagnetics, pp 84–88
go back to reference Lanczos C (1961) Linear differential operators. Van Nostrand, Princeton, NJMATH Lanczos C (1961) Linear differential operators. Van Nostrand, Princeton, NJMATH
go back to reference Langel RA, Estes RH (1985a) Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field. J Geophys Res 90:2487–2494CrossRef Langel RA, Estes RH (1985a) Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field. J Geophys Res 90:2487–2494CrossRef
go back to reference Langel RA, Estes RH (1985b) The near-Earth magnetic field at 1980 determined from Magsat data. J Geophys Res 90:2495–2510CrossRef Langel RA, Estes RH (1985b) The near-Earth magnetic field at 1980 determined from Magsat data. J Geophys Res 90:2495–2510CrossRef
go back to reference Langel RA, Sabaka TJ, Baldwin RT, Conrad JA (1996) The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled. Phys Earth Planet Inter 98:235–268CrossRef Langel RA, Sabaka TJ, Baldwin RT, Conrad JA (1996) The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled. Phys Earth Planet Inter 98:235–268CrossRef
go back to reference Madden TM, Mackie RL (1989) Three-dimensional magnetotelluric modelling and inversion. Proc Inst Electron Electric Eng 77:318–333 Madden TM, Mackie RL (1989) Three-dimensional magnetotelluric modelling and inversion. Proc Inst Electron Electric Eng 77:318–333
go back to reference Marchuk GI (1995) Adjoint equations and analysis of complex systems. Kluwer, DordrechtMATH Marchuk GI (1995) Adjoint equations and analysis of complex systems. Kluwer, DordrechtMATH
go back to reference Martinec Z (1989) Program to calculate the spectral harmonic expansion coefficients of the two scalar fields product. Comp Phys Commun 54:177–182CrossRef Martinec Z (1989) Program to calculate the spectral harmonic expansion coefficients of the two scalar fields product. Comp Phys Commun 54:177–182CrossRef
go back to reference Martinec Z (1997) Spectral–finite element approach to two-dimensional electromagnetic induction in a spherical earth. Geophys J Int 130:583–594CrossRef Martinec Z (1997) Spectral–finite element approach to two-dimensional electromagnetic induction in a spherical earth. Geophys J Int 130:583–594CrossRef
go back to reference Martinec Z (1999) Spectral–finite element approach to three-dimensional electromagnetic induction in a spherical earth. Geophys J Int 136:229–250CrossRef Martinec Z (1999) Spectral–finite element approach to three-dimensional electromagnetic induction in a spherical earth. Geophys J Int 136:229–250CrossRef
go back to reference Martinec Z, McCreadie H (2004) Electromagnetic induction modelling based on satellite magnetic vector data. Geophys J Int 157:1045–1060CrossRef Martinec Z, McCreadie H (2004) Electromagnetic induction modelling based on satellite magnetic vector data. Geophys J Int 157:1045–1060CrossRef
go back to reference Martinec Z, Velímský J (2009) The adjoint sensitivity method of global electromagnetic induction for CHAMP magnetic data. Geophys J Int 179:1372–1396. doi: 10.1111/j.1365-246X.2009.04356.xCrossRef Martinec Z, Velímský J (2009) The adjoint sensitivity method of global electromagnetic induction for CHAMP magnetic data. Geophys J Int 179:1372–1396. doi: 10.1111/j.1365-246X.2009.04356.xCrossRef
go back to reference Martinec Z, Everett ME, Velímský J (2003) Time-domain, spectral-finite element approach to transient two-dimensional geomagnetic induction in a spherical heterogeneous earth. Geophys J Int 155:33–43CrossRef Martinec Z, Everett ME, Velímský J (2003) Time-domain, spectral-finite element approach to transient two-dimensional geomagnetic induction in a spherical heterogeneous earth. Geophys J Int 155:33–43CrossRef
go back to reference McGillivray PR, Oldenburg DW (1990) Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problems: a comparative study. Geophys Prosp 38:499–524CrossRef McGillivray PR, Oldenburg DW (1990) Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problems: a comparative study. Geophys Prosp 38:499–524CrossRef
go back to reference McGillivray PR, Oldenburg DW, Ellis RG, Habashy TM (1994) Calculation of sensitivities for the frequency-domain electromagnetic problem. Geophys J Int 116:1–4CrossRef McGillivray PR, Oldenburg DW, Ellis RG, Habashy TM (1994) Calculation of sensitivities for the frequency-domain electromagnetic problem. Geophys J Int 116:1–4CrossRef
go back to reference Morse PW, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkMATH Morse PW, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkMATH
go back to reference Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion – I. Theory Geophys J Int 128:345–354CrossRef Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion – I. Theory Geophys J Int 128:345–354CrossRef
go back to reference Newman GA, Alumbaugh DL (2000) Three-dimensional magnetotelluric inversion using non-linear conjugate on induction effects of geomagnetic daily variations from equatorial gradients. Geophys J Int 140:410–424CrossRef Newman GA, Alumbaugh DL (2000) Three-dimensional magnetotelluric inversion using non-linear conjugate on induction effects of geomagnetic daily variations from equatorial gradients. Geophys J Int 140:410–424CrossRef
go back to reference Oldenburg DW (1990) Inversion of electromagnetic data: an overview of new techniques. Surv Geophys 11:231–270CrossRef Oldenburg DW (1990) Inversion of electromagnetic data: an overview of new techniques. Surv Geophys 11:231–270CrossRef
go back to reference Olsen N (1999) Induction studies with satellite data. Surv Geophys 20:309–340CrossRef Olsen N (1999) Induction studies with satellite data. Surv Geophys 20:309–340CrossRef
go back to reference Olsen N, Sabaka TJ, Lowes F (2005) New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57:1141–1149 Olsen N, Sabaka TJ, Lowes F (2005) New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57:1141–1149
go back to reference Olsen N, Lühr H, Sabaka TJ, Mandea M, Rother M, Toffner-Clausen L, Choi S (2006a) CHAOS – a model of the Earth’s magnetic field derived from CHAMP, Øersted & SAC-C magnetic satellite data. Geophys J Int 166:67–75CrossRef Olsen N, Lühr H, Sabaka TJ, Mandea M, Rother M, Toffner-Clausen L, Choi S (2006a) CHAOS – a model of the Earth’s magnetic field derived from CHAMP, Øersted & SAC-C magnetic satellite data. Geophys J Int 166:67–75CrossRef
go back to reference Olsen N, Haagmans R, Sabaka T, Kuvshinov A, Maus S, Purucker M, Rother M, Lesur V, Mandea M (2006b) The swarm end-to-end mission simulator study: separation of the various contributions to earths magnetic field using synthetic data. Earth Planets Space 58:359–370 Olsen N, Haagmans R, Sabaka T, Kuvshinov A, Maus S, Purucker M, Rother M, Lesur V, Mandea M (2006b) The swarm end-to-end mission simulator study: separation of the various contributions to earths magnetic field using synthetic data. Earth Planets Space 58:359–370
go back to reference Oraevsky VN, Rotanova NM, Semenov VYu, Bondar TN, Abramova DYu (1993) Magnetovariational sounding of the Earth using observatory and MAGSAT satellite data. Phys Earth Planet Inter 78:119–130CrossRef Oraevsky VN, Rotanova NM, Semenov VYu, Bondar TN, Abramova DYu (1993) Magnetovariational sounding of the Earth using observatory and MAGSAT satellite data. Phys Earth Planet Inter 78:119–130CrossRef
go back to reference Orszag SA (1970) Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J Atmos Sci 27:890CrossRef Orszag SA (1970) Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J Atmos Sci 27:890CrossRef
go back to reference Pěč K, Martinec Z (1986) Spectral theory of electromagnetic induction in a radially and laterally inhomogeneous Earth. Studia Geoph et Geod 30:345–355CrossRef Pěč K, Martinec Z (1986) Spectral theory of electromagnetic induction in a radially and laterally inhomogeneous Earth. Studia Geoph et Geod 30:345–355CrossRef
go back to reference Petzold L, Li ST, Cao Y, Serban R (2006) Sensitivity analysis of differential-algebraic equations and partial differential equations. Comp Chem Eng 30:1553–1559CrossRef Petzold L, Li ST, Cao Y, Serban R (2006) Sensitivity analysis of differential-algebraic equations and partial differential equations. Comp Chem Eng 30:1553–1559CrossRef
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran. The Art of Scientific Computing. Cambridge University Press, CambridgeMATH Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran. The Art of Scientific Computing. Cambridge University Press, CambridgeMATH
go back to reference Rodi WL (1976) A technique for improving the accuracy of finite element solutions of MT data. Geophys J R Astr Soc 44:483–506 Rodi WL (1976) A technique for improving the accuracy of finite element solutions of MT data. Geophys J R Astr Soc 44:483–506
go back to reference Rodi WL, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotel-luric inversion. Geophysics 66:174–187CrossRef Rodi WL, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotel-luric inversion. Geophysics 66:174–187CrossRef
go back to reference Sandu A, Daescu DN, Carmichael GR (2003) Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: I–theory and software tools. Atmos Environ 37:5083–5096CrossRef Sandu A, Daescu DN, Carmichael GR (2003) Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: I–theory and software tools. Atmos Environ 37:5083–5096CrossRef
go back to reference Sandu A, Daescu DN, Carmichael GR, Chai T (2005) Adjoint sensitivity analysis of regional air quality models. J Comput Phys 204:222–252MATHCrossRef Sandu A, Daescu DN, Carmichael GR, Chai T (2005) Adjoint sensitivity analysis of regional air quality models. J Comput Phys 204:222–252MATHCrossRef
go back to reference Schultz A, Larsen JC (1987) On the electrical conductivity of the mid-mantle, I, Calculation of equivalent scalar magnetotelluric response functions. Geophys J R Astr Soc 88:733–761 Schultz A, Larsen JC (1987) On the electrical conductivity of the mid-mantle, I, Calculation of equivalent scalar magnetotelluric response functions. Geophys J R Astr Soc 88:733–761
go back to reference Schultz A, Larsen JC (1990) On the electrical conductivity of the mid-mantle, II, Delineation of heterogeneity by application of extremal inverse solutions. Geophys J Int 101:565–580CrossRef Schultz A, Larsen JC (1990) On the electrical conductivity of the mid-mantle, II, Delineation of heterogeneity by application of extremal inverse solutions. Geophys J Int 101:565–580CrossRef
go back to reference Stratton JA (1941) Electromagnetic theory. Wiley, New Jersey (reissued in 2007) Stratton JA (1941) Electromagnetic theory. Wiley, New Jersey (reissued in 2007)
go back to reference Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia, PAMATHCrossRef Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia, PAMATHCrossRef
go back to reference Tarits P, Grammatica N (2000) Electromagnetic induction effects by the solar quiet magnetic field at satellite altitude. Geophys Res Lett 27:4009–4012CrossRef Tarits P, Grammatica N (2000) Electromagnetic induction effects by the solar quiet magnetic field at satellite altitude. Geophys Res Lett 27:4009–4012CrossRef
go back to reference Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys J Int 140:636–650CrossRef Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys J Int 140:636–650CrossRef
go back to reference Varshalovich DA, Moskalev AN, Khersonskii VK (1989) Quantum theory of angular momentum. World Scientific, SingaporeMATH Varshalovich DA, Moskalev AN, Khersonskii VK (1989) Quantum theory of angular momentum. World Scientific, SingaporeMATH
go back to reference Velímský J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101CrossRef Velímský J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101CrossRef
go back to reference Velímský J, Martinec Z, Everett ME (2006) Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion. Geophys J Int 166:529–542CrossRef Velímský J, Martinec Z, Everett ME (2006) Electrical conductivity in the Earth’s mantle inferred from CHAMP satellite measurements – I. Data processing and 1-D inversion. Geophys J Int 166:529–542CrossRef
go back to reference Weaver JT (1994) Mathematical methods for geo-electromagnetic induction, research studies press. Wiley, New York Weaver JT (1994) Mathematical methods for geo-electromagnetic induction, research studies press. Wiley, New York
go back to reference Weidelt P (1975) Inversion of two-dimensional conductivity structure. Phys Earth Planet Inter 10:282–291CrossRef Weidelt P (1975) Inversion of two-dimensional conductivity structure. Phys Earth Planet Inter 10:282–291CrossRef
go back to reference Weiss CJ, Everett ME (1998) Geomagnetic induction in a heterogeneous sphere: fully three-dimensional test computations and the response of a realistic distribution of oceans and continents. Geophys J Int 135: 650–662CrossRef Weiss CJ, Everett ME (1998) Geomagnetic induction in a heterogeneous sphere: fully three-dimensional test computations and the response of a realistic distribution of oceans and continents. Geophys J Int 135: 650–662CrossRef
Metadata
Title
The Forward and Adjoint Methods of Global Electromagnetic Induction forCHAMP Magnetic Data
Author
Zdeněk Martinec
Copyright Year
2010
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-01546-5_19

Premium Partner