Skip to main content
Top

2019 | OriginalPaper | Chapter

4. The Future of Fission-Track Thermochronology

Authors : Andrew Gleadow, Barry Kohn, Christian Seiler

Published in: Fission-Track Thermochronology and its Application to Geology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The methods of fission-track (FT) thermochronology, based on a combination of the external detector method, zeta calibration against independent age standards and measurements of horizontal confined track lengths, have undergone relatively little change over the last 25 years. This conventional approach has been highly successful and the foundation for important thermal history inversion methods, supporting an expanding range of geological applications. Several important new technologies have emerged in recent years, however, that are likely to have a disruptive effect on this relatively stable approach, including LA-ICP-MS analysis for 238U concentrations, new motorised digital microscopes and new software systems for microscope control, digital imaging and image analysis. These technologies allow for new image-based and highly automated approaches to FT dating and eliminate the need for neutron irradiations. Together they are likely to have a major influence on the future of FT analysis and gradually replace the older, highly laborious manual methods. Automation will facilitate the acquisition of larger and more comprehensive data sets than was previously possible, assist with standardisation and have important implications for training and distributed analysis based on image sharing. Track length measurements have been more difficult to automate, but 3D measurements and automated semi-track length measurements are likely to become part of future FT methods. Other important trends suggest that FT analysis will increasingly be combined with other isotopic dating methods on the same grains, and multi-system methods on coexisting minerals, to give much more comprehensive accounts of the thermal evolution of rocks. There are still a range of important fundamental issues in FT analysis that are poorly understood, such as a full understanding of the effects of composition and radiation damage on the annealing properties of different minerals, which are likely to be fruitful areas for future research in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afra B, Lang M, Rodriguez MD, Zhang J, Giulian JR, Kirby N, Ewing RC, Trautmann C, Toulemonde M, Kluth P (2011) Annealing kinetics of latent particle tracks in Durango apatite. Phys Rev B 83:064116CrossRef Afra B, Lang M, Rodriguez MD, Zhang J, Giulian JR, Kirby N, Ewing RC, Trautmann C, Toulemonde M, Kluth P (2011) Annealing kinetics of latent particle tracks in Durango apatite. Phys Rev B 83:064116CrossRef
go back to reference Barbarand J, Carter A, Hurford AJ (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137CrossRef Barbarand J, Carter A, Hurford AJ (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137CrossRef
go back to reference Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58:205–238CrossRef Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58:205–238CrossRef
go back to reference Booth JT, Jones J, Schaeffer K, Woodall K, Kumar R, Dodds Z, Donelick R (2015) Mapping for microscopes: automating apatite-image handling. Goldschmidt Abstr 2015:341 Booth JT, Jones J, Schaeffer K, Woodall K, Kumar R, Dodds Z, Donelick R (2015) Mapping for microscopes: automating apatite-image handling. Goldschmidt Abstr 2015:341
go back to reference Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525:1–28CrossRef Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525:1–28CrossRef
go back to reference Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223CrossRef Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223CrossRef
go back to reference Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology 37:407–410CrossRef Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology 37:407–410CrossRef
go back to reference Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance studies. Mineral Assoc Canada Short Course 42:219–247 (St Johns, NL) Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance studies. Mineral Assoc Canada Short Course 42:219–247 (St Johns, NL)
go back to reference Chew D, Donelick RA, Donelick MB, Kamber BS, Stock MJ (2014) Apatite chlorine concentration measurements by LA-ICP-MS. Geostand Geoanal Res 38:23–35CrossRef Chew D, Donelick RA, Donelick MB, Kamber BS, Stock MJ (2014) Apatite chlorine concentration measurements by LA-ICP-MS. Geostand Geoanal Res 38:23–35CrossRef
go back to reference Chew D, Babechuk MG, Cogné N, Mark C, O’Sullivan GJ, Henrichs IA, Doepke D, McKenna CA (2016) (LA, Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem Geol 435:35–48CrossRef Chew D, Babechuk MG, Cogné N, Mark C, O’Sullivan GJ, Henrichs IA, Doepke D, McKenna CA (2016) (LA, Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem Geol 435:35–48CrossRef
go back to reference Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Ear Planet Sci Lett 150:277–290CrossRef Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Ear Planet Sci Lett 150:277–290CrossRef
go back to reference Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin
go back to reference Donelick RA (1993) Apatite etching characteristics versus chemical composition. Nucl Tracks Radiat Meas 21:604 Donelick RA (1993) Apatite etching characteristics versus chemical composition. Nucl Tracks Radiat Meas 21:604
go back to reference Donelick A, Donelick R (2015) Machine learning applied to finding and characterizing the tips of etched fission tracks. Goldschmidt Abstr 2015:759 Donelick A, Donelick R (2015) Machine learning applied to finding and characterizing the tips of etched fission tracks. Goldschmidt Abstr 2015:759
go back to reference Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94CrossRef Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94CrossRef
go back to reference Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580CrossRef Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580CrossRef
go back to reference Fleischer RL, Hart HR (1972) Fission track dating: techniques and problems. In: Bishop WW, Miller DA, Cole S (eds) Calibration of hominid evolution. Scottish Academic Press, Edinburgh, pp 135–170 Fleischer RL, Hart HR (1972) Fission track dating: techniques and problems. In: Bishop WW, Miller DA, Cole S (eds) Calibration of hominid evolution. Scottish Academic Press, Edinburgh, pp 135–170
go back to reference Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids. University of California Press, Berkeley, p 605 Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids. University of California Press, Berkeley, p 605
go back to reference Galbraith RF (1990) The radial plot; graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214CrossRef Galbraith RF (1990) The radial plot; graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214CrossRef
go back to reference Galbraith RF (2005) Statistics for fission track analysis. Chapman & Hall, Boca Raton, p 219CrossRef Galbraith RF (2005) Statistics for fission track analysis. Chapman & Hall, Boca Raton, p 219CrossRef
go back to reference Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117:B02408 Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117:B02408
go back to reference Giese J, Seward D, Stuart FM, Wüthrich E, Gnos E, Kurz D, Eggenberger U, Schruers G (2010) Electrodynamic disaggregation: does it affect apatite fission-track and (U-Th)/He analyses? Geostand Geoanal Res 34:39–48CrossRef Giese J, Seward D, Stuart FM, Wüthrich E, Gnos E, Kurz D, Eggenberger U, Schruers G (2010) Electrodynamic disaggregation: does it affect apatite fission-track and (U-Th)/He analyses? Geostand Geoanal Res 34:39–48CrossRef
go back to reference Gleadow AJW (1981) Fission-track dating methods: what are the real alternatives? Nucl Tracks 5:3–14CrossRef Gleadow AJW (1981) Fission-track dating methods: what are the real alternatives? Nucl Tracks 5:3–14CrossRef
go back to reference Gleadow AJW, Seiler C (2015) Fission track dating and thermochronology. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 285–296 Gleadow AJW, Seiler C (2015) Fission track dating and thermochronology. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 285–296
go back to reference Gleadow AJW, Leigh-Jones P, Duddy IR, Lovering JF (1982) An automated microscope stage system for fission track dating and particle track mapping. In: Workshop on fission track dating. Fifth international conference on geochronology, cosmochronology and isotope geology, Nikko Japan, Abstract, pp 22–23 Gleadow AJW, Leigh-Jones P, Duddy IR, Lovering JF (1982) An automated microscope stage system for fission track dating and particle track mapping. In: Workshop on fission track dating. Fifth international conference on geochronology, cosmochronology and isotope geology, Nikko Japan, Abstract, pp 22–23
go back to reference Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415CrossRef Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415CrossRef
go back to reference Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630CrossRef Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630CrossRef
go back to reference Gleadow AJW, Raza A, Kohn BP, Spencer SAS (2005) The potential of monazite for fission-track dating. Geochim Cosmochim Acta 69(Supp 1):A21 Gleadow AJW, Raza A, Kohn BP, Spencer SAS (2005) The potential of monazite for fission-track dating. Geochim Cosmochim Acta 69(Supp 1):A21
go back to reference Gleadow AJW, Gleadow SJ, Belton DX, Kohn, BP, Krochmal MS (2009a) Coincidence Mapping, a key strategy for automated counting in fission track dating. In: Ventura B, Lisker F, Glasmacher UA (eds) Thermochronological methods: from palaeotemperature constraints to landscape evolution models, vol 324. Geological Society of London Special Publication, pp 25–36 Gleadow AJW, Gleadow SJ, Belton DX, Kohn, BP, Krochmal MS (2009a) Coincidence Mapping, a key strategy for automated counting in fission track dating. In: Ventura B, Lisker F, Glasmacher UA (eds) Thermochronological methods: from palaeotemperature constraints to landscape evolution models, vol 324. Geological Society of London Special Publication, pp 25–36
go back to reference Gleadow AJW, Gleadow SJ, Frei S, Kohlmann F, Kohn, BP (2009b) Automated analytical techniques for fission track thermochronology. Geochim Cosmochim Acta 73(Suppl):A441 Gleadow AJW, Gleadow SJ, Frei S, Kohlmann F, Kohn, BP (2009b) Automated analytical techniques for fission track thermochronology. Geochim Cosmochim Acta 73(Suppl):A441
go back to reference Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D (2015) The Fish Canyon Tuff: a new look at an old low-temperature thermochronology standard. Ear Planet Sci Lett 424:95–108CrossRef Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D (2015) The Fish Canyon Tuff: a new look at an old low-temperature thermochronology standard. Ear Planet Sci Lett 424:95–108CrossRef
go back to reference Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation in halogens. Am Mineral 97:1103–1115CrossRef Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation in halogens. Am Mineral 97:1103–1115CrossRef
go back to reference Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328 Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328
go back to reference Green PF, Duddy IR, Hegarty KA (2005) Comment on compositional and structural control of fission track annealing in apatite by Barbarand J, Carter A, Wood I, and Hurford AJ. Chem Geol 214:351–358 Green PF, Duddy IR, Hegarty KA (2005) Comment on compositional and structural control of fission track annealing in apatite by Barbarand J, Carter A, Wood I, and Hurford AJ. Chem Geol 214:351–358
go back to reference Haack U (1972) Systematics in the fission track annealing of minerals. Contrib Mineral Petrol 35:303–312CrossRef Haack U (1972) Systematics in the fission track annealing of minerals. Contrib Mineral Petrol 35:303–312CrossRef
go back to reference Hasebe N, Barberand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145CrossRef Hasebe N, Barberand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145CrossRef
go back to reference Hasebe N, Tamura A, Arai S (2013) Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating. Island Arc 22:280–291CrossRef Hasebe N, Tamura A, Arai S (2013) Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating. Island Arc 22:280–291CrossRef
go back to reference Hurford AJ (1998) Zeta: the ultimate solution to fission-track analysis calibration or just an interim measure? In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, pp 19–32CrossRef Hurford AJ (1998) Zeta: the ultimate solution to fission-track analysis calibration or just an interim measure? In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, pp 19–32CrossRef
go back to reference Hurford AJ (2018) Chapter 1. An historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin Hurford AJ (2018) Chapter 1. An historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin
go back to reference Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Chem Geol (Isot Geosci Sect) 1:285–317 Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Chem Geol (Isot Geosci Sect) 1:285–317
go back to reference Jonckheere R, van den Haute P (2002) On the efficiency of fission-track counts in an internal and external apatite surface and in a muscovite external detector. Radiat Meas 35:29–40CrossRef Jonckheere R, van den Haute P (2002) On the efficiency of fission-track counts in an internal and external apatite surface and in a muscovite external detector. Radiat Meas 35:29–40CrossRef
go back to reference Jonckheere R, Ratschbacher L, Wagner GA (2003) A repositioning technique for counting induced fission tracks in muscovite external detectors in single-grain dating of minerals with low and inhomogeneous uranium concentrations. Radiat Meas 37:217–219CrossRef Jonckheere R, Ratschbacher L, Wagner GA (2003) A repositioning technique for counting induced fission tracks in muscovite external detectors in single-grain dating of minerals with low and inhomogeneous uranium concentrations. Radiat Meas 37:217–219CrossRef
go back to reference Jonckheere R, Tamer M, Wauschkuhn F, Wauschkuhn B, Ratschbacher L (2017) Single-track length measurements of step-etched fission tracks in Durango apatite: Vorsprung durch Technik. Am Mineral (in press) Jonckheere R, Tamer M, Wauschkuhn F, Wauschkuhn B, Ratschbacher L (2017) Single-track length measurements of step-etched fission tracks in Durango apatite: Vorsprung durch Technik. Am Mineral (in press)
go back to reference Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRef Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRef
go back to reference Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Ear Planet Sci Lett 284:504–515CrossRef Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Ear Planet Sci Lett 284:504–515CrossRef
go back to reference Ketcham RA, Carter A, Hurford AJ (2015) Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. Am Mineral 100:1452–1468CrossRef Ketcham RA, Carter A, Hurford AJ (2015) Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. Am Mineral 100:1452–1468CrossRef
go back to reference Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin
go back to reference Kumar R (2015) Machine learning applied to autonomous identification of fission tracks in apatite. Goldschmidt Abstr 2015:1712 Kumar R (2015) Machine learning applied to autonomous identification of fission tracks in apatite. Goldschmidt Abstr 2015:1712
go back to reference Laslett GM, Galbraith RF (1996) Statistical properties of semi-tracks in fission track analysis. Radiat Meas 26:565–576CrossRef Laslett GM, Galbraith RF (1996) Statistical properties of semi-tracks in fission track analysis. Radiat Meas 26:565–576CrossRef
go back to reference Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission track length distributions. Nucl Tracks 6:79–85 Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission track length distributions. Nucl Tracks 6:79–85
go back to reference Li W, Wang L, Lang M, Trautmann C, Ewing RC (2011) Thermal annealing mechanisms of latent fission tracks: apatite vs. zircon. Ear Planet Sci Lett 302:227–235CrossRef Li W, Wang L, Lang M, Trautmann C, Ewing RC (2011) Thermal annealing mechanisms of latent fission tracks: apatite vs. zircon. Ear Planet Sci Lett 302:227–235CrossRef
go back to reference Li W, Lang M, Gleadow AJW, Zdorovets MV, Ewing RC (2012) Thermal annealing of unetched fission tracks in apatite. Ear Planet Sci Lett 321–322:121–127CrossRef Li W, Lang M, Gleadow AJW, Zdorovets MV, Ewing RC (2012) Thermal annealing of unetched fission tracks in apatite. Ear Planet Sci Lett 321–322:121–127CrossRef
go back to reference Naeser C, Dodge FCW (1969) Fission-track ages of accessory minerals from granitic rocks of the central Sierra Nevada Batholith, California. Geol Soc Am Bull 80:2201–2212CrossRef Naeser C, Dodge FCW (1969) Fission-track ages of accessory minerals from granitic rocks of the central Sierra Nevada Batholith, California. Geol Soc Am Bull 80:2201–2212CrossRef
go back to reference Peternell F, Kohlmann F, Wilson CJL, Gleadow AJW (2009) A new approach to crystallographic orientation measurement for apatite fission track analysis: effects of crystal morphology and implications for automation. Chem Geol 265:527–539CrossRef Peternell F, Kohlmann F, Wilson CJL, Gleadow AJW (2009) A new approach to crystallographic orientation measurement for apatite fission track analysis: effects of crystal morphology and implications for automation. Chem Geol 265:527–539CrossRef
go back to reference Reed L, Vigue K, Kumar R, Ndefo-Dahl A, Dodds Z, Donelick R (2014) Automated fission track and etch figure characterisation in apatite crystals (Abstract). In: 14th International conference on thermochronology, Chamonix, September 2014, p 23 Reed L, Vigue K, Kumar R, Ndefo-Dahl A, Dodds Z, Donelick R (2014) Automated fission track and etch figure characterisation in apatite crystals (Abstract). In: 14th International conference on thermochronology, Chamonix, September 2014, p 23
go back to reference Seiler C, Kohn B, Gleadow A (2014) Apatite fission track analysis by LA-ICP-MS: an evaluation of the absolute dating approach. In: 14th International conference on thermochronology, Chamonix, September 2014, pp 11–12 Seiler C, Kohn B, Gleadow A (2014) Apatite fission track analysis by LA-ICP-MS: an evaluation of the absolute dating approach. In: 14th International conference on thermochronology, Chamonix, September 2014, pp 11–12
go back to reference Shen CB, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She ZB, Miu XL, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sed Geol 281:194–207CrossRef Shen CB, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She ZB, Miu XL, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sed Geol 281:194–207CrossRef
go back to reference Smith MJ, Leigh-Jones P (1985) An automated microscope scanning stage for fission track dating. Nucl Tracks 10:395–400 Smith MJ, Leigh-Jones P (1985) An automated microscope scanning stage for fission track dating. Nucl Tracks 10:395–400
go back to reference Soares CJ, Guedes S, Hadler JC, Mertz-Kraus R, Zack T, Iunes PJ (2014) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys Chem Mineral 41:65–73CrossRef Soares CJ, Guedes S, Hadler JC, Mertz-Kraus R, Zack T, Iunes PJ (2014) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys Chem Mineral 41:65–73CrossRef
go back to reference Spiegel C, Kohn B, Raza A, Rainer T, Gleadow A (2007) The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochim Cosmochim Acta 71:4512–4537CrossRef Spiegel C, Kohn B, Raza A, Rainer T, Gleadow A (2007) The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochim Cosmochim Acta 71:4512–4537CrossRef
go back to reference Vermeesch P (2017) Statistics for LA-ICP-MS based fission track dating. Chem Geol (in press) Vermeesch P (2017) Statistics for LA-ICP-MS based fission track dating. Chem Geol (in press)
go back to reference Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin
go back to reference Vermeesch P, He J (2016) geochron@home: a crowdsourcing app for fission track dating. In: 15th International conference on thermochronology, Maresias, Brazil, September 2016, p 2 Vermeesch P, He J (2016) geochron@home: a crowdsourcing app for fission track dating. In: 15th International conference on thermochronology, Maresias, Brazil, September 2016, p 2
go back to reference Wadatsumi K, Masumoto S (1990) Three-dimensional measurement of fission-tracks: principles and an example in zircon from the Fish Canyon Tuff. Nucl Tracks Radiat Meas 17:399–406CrossRef Wadatsumi K, Masumoto S (1990) Three-dimensional measurement of fission-tracks: principles and an example in zircon from the Fish Canyon Tuff. Nucl Tracks Radiat Meas 17:399–406CrossRef
go back to reference Wadatsumi K, Matsumoto S, Suzuki K (1988) Computerised image-processing: system for fission-track dating; system configuration and functions. J Geosci Osaka City Univ 31:19–46 Wadatsumi K, Matsumoto S, Suzuki K (1988) Computerised image-processing: system for fission-track dating; system configuration and functions. J Geosci Osaka City Univ 31:19–46
Metadata
Title
The Future of Fission-Track Thermochronology
Authors
Andrew Gleadow
Barry Kohn
Christian Seiler
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-89421-8_4