Skip to main content
Top
Published in: Cognitive Neurodynamics 5/2021

07-05-2021 | Review Paper

The glutamatergic synapse: a complex machinery for information processing

Author: Vito Di Maio

Published in: Cognitive Neurodynamics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain’s information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allam SL, Ghaderi VS, Bouteiller JM, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci. https://doi.org/10.3389/fncom.2012.00070 Allam SL, Ghaderi VS, Bouteiller JM, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci. https://​doi.​org/​10.​3389/​fncom.​2012.​00070
go back to reference Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307PubMedPubMedCentralCrossRef Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307PubMedPubMedCentralCrossRef
go back to reference Beaumont V, Llobet A, Lagnado L (2005) Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. Proc Natl Acad Sci USA 102:10700–10705PubMedPubMedCentralCrossRef Beaumont V, Llobet A, Lagnado L (2005) Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. Proc Natl Acad Sci USA 102:10700–10705PubMedPubMedCentralCrossRef
go back to reference Bliss T, Collingridge G (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:1–14CrossRef Bliss T, Collingridge G (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:1–14CrossRef
go back to reference Boucher J, Kroger H, Sı A (2010) Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215:49–65 Boucher J, Kroger H, Sı A (2010) Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215:49–65
go back to reference Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedCrossRef Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedCrossRef
go back to reference Burk K, Ramachandran B, Ahmed S, Hurtado-Zavala JI, Awasthi A, Benito E, Faram R, Ahmad H, Swaminathan A, McIlhinney J, Fischer A, Perestenko P, Dean C (2017) Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6. Cereb Cortex 28:1087–1104. https://doi.org/10.1093/cercor/bhx009CrossRef Burk K, Ramachandran B, Ahmed S, Hurtado-Zavala JI, Awasthi A, Benito E, Faram R, Ahmad H, Swaminathan A, McIlhinney J, Fischer A, Perestenko P, Dean C (2017) Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6. Cereb Cortex 28:1087–1104. https://​doi.​org/​10.​1093/​cercor/​bhx009CrossRef
go back to reference Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMedCrossRef Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMedCrossRef
go back to reference Di Maio V (2008) Regulation of information passing by synaptic transmission: a short review. Brain Res 1225:26–38PubMedCrossRef Di Maio V (2008) Regulation of information passing by synaptic transmission: a short review. Brain Res 1225:26–38PubMedCrossRef
go back to reference Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in neural signal processing. IntechOpen (in press) Di Maio V, Santillo S (2020) Information processing and synaptic transmission. In: Vinjamuri DR (ed) Advances in neural signal processing. IntechOpen (in press)
go back to reference Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMedCrossRef Di Maio V, Ventriglia F, Santillo S (2016a) AMPA/NMDA cooperativity and integration during a single synaptic event. J Comput Neurosci 41:127–142PubMedCrossRef
go back to reference Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentralCrossRef Di Maio V, Ventriglia F, Santillo S (2016b) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10:315–325PubMedPubMedCentralCrossRef
go back to reference Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacological Review 51:7–61 Dingledine R, Borges K, Bowie D, Traynelis S (1999) The gutamate receptor ion channels. Pharmacological Review 51:7–61
go back to reference Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMedCrossRef Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose path recording of single quanta at individual hippocampal synapses. Nature 388:874–878PubMedCrossRef
go back to reference Gillespie D (1996) The multivariate langevin and fokker-planck equations. Am J Phys 64:1246–1257CrossRef Gillespie D (1996) The multivariate langevin and fokker-planck equations. Am J Phys 64:1246–1257CrossRef
go back to reference Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. Journal Neuscience 19:10082–10097 Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the ca1 area of the rat hippocampus. Journal Neuscience 19:10082–10097
go back to reference Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E (2018) Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7:e31755. https://doi.org/10.7554/eLife.31755, Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E (2018) Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7:e31755. https://​doi.​org/​10.​7554/​eLife.​31755,
go back to reference Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997. https://doi.org/10.1038/nn.3137, erratum. In: Nat Neurosci. 2016 Jan; 19(1):172 Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997. https://​doi.​org/​10.​1038/​nn.​3137, erratum. In: Nat Neurosci. 2016 Jan; 19(1):172
go back to reference Jonas P, Major G, Sackmann B (1993) Quantal components of unitary epscs at mossy fiber synapse on ca3 pyramidal cell of rat hippocampus. J Physiol 472C:615–663CrossRef Jonas P, Major G, Sackmann B (1993) Quantal components of unitary epscs at mossy fiber synapse on ca3 pyramidal cell of rat hippocampus. J Physiol 472C:615–663CrossRef
go back to reference Karunanithi S, Marin L, Wong K, Atwood HL (2002) Quantal size and variation determined by vesicle size in normal and mutant drosophila glutamatergic synapses. J Neurosci 22:10267–10276PubMedPubMedCentralCrossRef Karunanithi S, Marin L, Wong K, Atwood HL (2002) Quantal size and variation determined by vesicle size in normal and mutant drosophila glutamatergic synapses. J Neurosci 22:10267–10276PubMedPubMedCentralCrossRef
go back to reference Jand Koester BH, Sakmann (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601. https://doi.org/10.1073/pnas.95.16.9596 Jand Koester BH, Sakmann (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601. https://​doi.​org/​10.​1073/​pnas.​95.​16.​9596
go back to reference Lansky P (1999) Sato S (1999) The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. Journal of the peripheral nervouse system Published 4:27–42 Lansky P (1999) Sato S (1999) The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. Journal of the peripheral nervouse system Published 4:27–42
go back to reference Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5:324–334CrossRef Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5:324–334CrossRef
go back to reference Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of snarepin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896PubMedCrossRef Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D (2007) Energetics and dynamics of snarepin folding across lipid bilayers. Nat Struct Mol Biol 14:890–896PubMedCrossRef
go back to reference Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMedCrossRef Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409PubMedCrossRef
go back to reference Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–254PubMedCrossRef Lu WY, Man HY, Ju W, Trimble WS, MacDonald JF, Wang YT (2001) Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–254PubMedCrossRef
go back to reference Magee JC, Cook EP (2000) Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–03PubMedCrossRef Magee JC, Cook EP (2000) Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–03PubMedCrossRef
go back to reference Magee JC, Johnston D (1995) Characterization of single voltage-gated \(na+\) and \({\rm Ca}^{2+}\) channels in apical dendrites of rat cai pyramidal neurons. J Physiol 487:67–90PubMedPubMedCentralCrossRef Magee JC, Johnston D (1995) Characterization of single voltage-gated \(na+\) and \({\rm Ca}^{2+}\) channels in apical dendrites of rat cai pyramidal neurons. J Physiol 487:67–90PubMedPubMedCentralCrossRef
go back to reference McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Acadademi of Science USA 97:6173–6178CrossRef McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Acadademi of Science USA 97:6173–6178CrossRef
go back to reference Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMedCrossRef Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. Neuroscience 102:527–540PubMedCrossRef
go back to reference Merchán-Pérez FN: A, Rodríguez JR, González S, Robles V, Defelipe J, Larrañaga P, Bielza C et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588. https://doi.org/10.1093/cercor/bht018 Merchán-Pérez FN: A, Rodríguez JR, González S, Robles V, Defelipe J, Larrañaga P, Bielza C et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588. https://​doi.​org/​10.​1093/​cercor/​bht018
go back to reference Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedCrossRef Nicoll R, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedCrossRef
go back to reference Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117PubMedCrossRef Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117PubMedCrossRef
go back to reference Rall W (1974) Dendritic spines, synaptic potency and neuronal plasticity. Brain Information Service, University of California, Los Angeles, pp 13–21 Rall W (1974) Dendritic spines, synaptic potency and neuronal plasticity. Brain Information Service, University of California, Los Angeles, pp 13–21
go back to reference Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. Journal Neuroscience 17:5858–5867PubMedCrossRef Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. Journal Neuroscience 17:5858–5867PubMedCrossRef
go back to reference Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395PubMedCrossRef Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395PubMedCrossRef
go back to reference Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, New York Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner’s Sons, New York
go back to reference Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci 93:5747–5752. https://doi.org/10.1073/pnas.93.12.5747 Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci 93:5747–5752. https://​doi.​org/​10.​1073/​pnas.​93.​12.​5747
go back to reference Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a snare complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395:347–353PubMedCrossRef Sutton RB, Fasshauer D, Jahn R, Brünger AT (1998) Crystal structure of a snare complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395:347–353PubMedCrossRef
go back to reference Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Brügger SBS, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedCrossRef Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Brügger SBS, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedCrossRef
go back to reference Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Annual New York Academy of Science 868:474–482CrossRef Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Annual New York Academy of Science 868:474–482CrossRef
go back to reference Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMedCrossRef Tønnesen J, Rózsa G, Katona B, Nägerl U (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685PubMedCrossRef
go back to reference Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24:6171–6180PubMedCrossRef Vargas-Caballero MI, Robinson H (2004) Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J Neurosci 24:6171–6180PubMedCrossRef
go back to reference Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMedCrossRef Ventriglia F (2011) Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 104:14–22PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMedCrossRef Ventriglia F, Di Maio V (2000a) A brownian model of glutamate diffusion in excitatory synapses of hippocampus. Biosystems 58:67–74PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMedCrossRef Ventriglia F, Di Maio V (2000b) A brownian simulation model of glutamate synaptic diffusion in the femtosecond time scale. Biol Cybern 83:93–109PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMedCrossRef Ventriglia F, Di Maio V (2002) Stochastic fluctuation of the synaptic function. Biosystems 67:287–294PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMedCrossRef Ventriglia F, Di Maio V (2003a) Stochastic fluctuation of the quantal epsc amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and AMPA receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMedCrossRef Ventriglia F, Di Maio V (2003b) Synaptic fusion pore structure and AMPA receptors activation according to brownian simulation of glutamate diffusion. Biol Cybern 88:201–209PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2013a) Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMedCrossRef Ventriglia F, Di Maio V (2013a) Effects of AMPARs trafficking and glutamate-receptor binding probability on stochastic variability of epsc. Biosystems 112:298–304PubMedCrossRef
go back to reference Ventriglia F, Di Maio V (2013b) Glutamate-AMPA interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMedCrossRef Ventriglia F, Di Maio V (2013b) Glutamate-AMPA interaction in a model of synaptic transmission. Brain Res 1536:168–176PubMedCrossRef
go back to reference Volk L, Chiu SL, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38:127–149PubMedCrossRef Volk L, Chiu SL, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38:127–149PubMedCrossRef
go back to reference Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) Snarepins: Minimal machinery for membrane fusion. Cell 92:759–772PubMedCrossRef Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) Snarepins: Minimal machinery for membrane fusion. Cell 92:759–772PubMedCrossRef
go back to reference Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Acadademi of Science USA 102:19192–19197CrossRef Zuber B, Nikonenko I, Klauser P, Muller D, Dobochet J (2005) The mammallian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Acadademi of Science USA 102:19192–19197CrossRef
Metadata
Title
The glutamatergic synapse: a complex machinery for information processing
Author
Vito Di Maio
Publication date
07-05-2021
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 5/2021
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-021-09679-w

Other articles of this Issue 5/2021

Cognitive Neurodynamics 5/2021 Go to the issue