Skip to main content
Top

2016 | OriginalPaper | Chapter

The Gradient Flow Approach to Hydrodynamic Limits for the Simple Exclusion Process

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a new approach to prove the macroscopic hydrodynamic behaviour for interacting particle systems, and as an example we treat the well-known case of the symmetric simple exclusion process (SSEP). More precisely, we characterize any possible limit of its empirical density measures as solutions to the heat equation by passing to the limit in the gradient flow structure of the particle system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This is also the assumption used to make Yau’s relative entropy method work, see [21].
 
Literature
1.
go back to reference Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307, 791–815 (2011)MathSciNetCrossRefMATH Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307, 791–815 (2011)MathSciNetCrossRefMATH
2.
go back to reference Adams, S., Dirr, N., Peletier, M. A., Zimmer, J.: Large deviations and gradient flows. Phil. Trans. R. Soc. A 371(2005), 0341 (2013) Adams, S., Dirr, N., Peletier, M. A., Zimmer, J.: Large deviations and gradient flows. Phil. Trans. R. Soc. A 371(2005), 0341 (2013)
3.
go back to reference Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich, 2nd edn. Birkhauser Verlag, Basel (2008)MATH Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich, 2nd edn. Birkhauser Verlag, Basel (2008)MATH
4.
go back to reference Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Relat. Fields 145, 517–564 (2009)MathSciNetCrossRefMATH Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Relat. Fields 145, 517–564 (2009)MathSciNetCrossRefMATH
5.
go back to reference De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Att. Acc. Naz. Linc. R. Cl. Sci. Fis. Mat. Nat. 8(68)(3), 180–187 (1980) De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curve. Att. Acc. Naz. Linc. R. Cl. Sci. Fis. Mat. Nat. 8(68)(3), 180–187 (1980)
6.
go back to reference Erbar, M., Fathi, M., Laschos, V., Schlichting, A.: Gradient flow structure for McKean-Vlasov equations on discrete spaces. arXiv:1601.08098 Erbar, M., Fathi, M., Laschos, V., Schlichting, A.: Gradient flow structure for McKean-Vlasov equations on discrete spaces. arXiv:​1601.​08098
7.
go back to reference Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)MathSciNetCrossRefMATH Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)MathSciNetCrossRefMATH
8.
go back to reference Fathi, M.: A gradient flow approach to large deviations for diffusion processes. Journal de Mathématiques Pures et Appliquées (2014). arXiv:1405.3910 Fathi, M.: A gradient flow approach to large deviations for diffusion processes. Journal de Mathématiques Pures et Appliquées (2014). arXiv:​1405.​3910
9.
go back to reference Fathi, M., Maas, J.: Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Probab. (2015) Fathi, M., Maas, J.: Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Probab. (2015)
10.
go back to reference Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)MathSciNetCrossRefMATH Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)MathSciNetCrossRefMATH
11.
go back to reference Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999) Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)
12.
14.
go back to reference Maas, J., Mielke, A.: Gradient structures for chemical reactions with detailed balance: I. Modeling and large-volume limit (2015) Maas, J., Mielke, A.: Gradient structures for chemical reactions with detailed balance: I. Modeling and large-volume limit (2015)
16.
go back to reference Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial. Differ. Equ. 48(1–2), 1–31 (2013)MathSciNetCrossRefMATH Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial. Differ. Equ. 48(1–2), 1–31 (2013)MathSciNetCrossRefMATH
17.
go back to reference Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial. Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetCrossRefMATH Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial. Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetCrossRefMATH
18.
go back to reference Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math 57(12), 1627–1672 (2004)MathSciNetCrossRefMATH Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math 57(12), 1627–1672 (2004)MathSciNetCrossRefMATH
19.
go back to reference Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. A 31(4), 1427–1451 (2011) Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. A 31(4), 1427–1451 (2011)
20.
go back to reference Vazquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. A Clarendon Press Publication, Oxford (2006)CrossRef Vazquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. A Clarendon Press Publication, Oxford (2006)CrossRef
Metadata
Title
The Gradient Flow Approach to Hydrodynamic Limits for the Simple Exclusion Process
Authors
Max Fathi
Marielle Simon
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-32144-8_8

Premium Partner